Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 705872, 13 pages
http://dx.doi.org/10.1100/2012/705872
Research Article

Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon Flux Measurements of Montanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

1Global Change Research Centre AS CR, Bělidla 4a, 603 00 Brno, Czech Republic
2Remote Sensing Laboratories, Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
3Department of Surveying and Spacial Sciences, School of Geography and Environmental Studies, University of Tasmania, Private Bag 76, Hobart TAS 7001, Australia
4Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
5Department of Plant Physiology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic

Received 17 January 2012; Accepted 26 March 2012

Academic Editors: M. Carnol, H. Hasenauer, and B. Tóthmérész

Copyright © 2012 Alexander Ač et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IPCC, “Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change,” in Summary for Policymakers, S. Solomon, D. Qin, M. Manning et al., Eds., p. 996, Cambridge University Press, Cambridge, UK, 2007. View at Google Scholar
  2. W. A. Kurz, C. C. Dymond, G. Stinson et al., “Mountain pine beetle and forest carbon feedback to climate change,” Nature, vol. 452, no. 7190, pp. 987–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. D. Allen, A. K. Macalady, H. Chenchouni et al., “A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests,” Forest Ecology and Management, vol. 259, no. 4, pp. 660–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Piao, P. Ciais, P. Friedlingstein et al., “Spatiotemporal patterns of terrestrial carbon cycle during the 20th century,” Global Biogeochemical Cycles, vol. 23, no. 4, Article ID GB4026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. V. Ollinger, A. D. Richardson, M. E. Martin et al., “Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19336–19341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. DeFries, “Terrestrial vegetation in the coupled human-earth system: contributions of remote sensing,” Annual Review of Environment and Resources, vol. 33, pp. 369–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. F. Rahman, V. D. Cordova, J. A. Gamon, H. P. Schmid, and D. A. Sims, “Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: a novel approach,” Geophysical Research Letters, vol. 31, no. 10, pp. L10503–4, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. E. Schaepman, “Spectrodirectional remote sensing: from pixels to processes,” International Journal of Applied Earth Observation and Geoinformation, vol. 9, no. 2, pp. 204–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. G. Jones and R. A. Vaughan, Remote Sensing of Vegetation: Principles, Techniques, and Applications, Oxford University Press, Oxford, UK, 1st edition, 2010.
  10. R. B. Myneni, F. G. Hall, P. J. Sellers, and A. L. Marshak, “Interpretation of spectral vegetation indexes,” IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 2, pp. 481–486, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. G. le Maire, C. François, and E. Dufrêne, “Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements,” Remote Sensing of Environment, vol. 89, no. 1, pp. 1–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture,” Remote Sensing of Environment, vol. 90, no. 3, pp. 337–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Ustin, D. A. Roberts, J. A. Gamon, G. P. Asner, and R. O. Green, “Using imaging spectroscopy to study ecosystem processes and properties,” BioScience, vol. 54, no. 6, pp. 523–534, 2004. View at Google Scholar · View at Scopus
  14. N. T. Boelman, M. Stieglitz, H. M. Rueth et al., “Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra,” Oecologia, vol. 135, no. 3, pp. 414–421, 2003. View at Google Scholar · View at Scopus
  15. M. F. Garbulsky, J. Peñuelas, D. Papale, and I. Filella, “Remote estimation of carbon dioxide uptake by a Mediterranean forest,” Global Change Biology, vol. 14, no. 12, pp. 2860–2867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Grace, C. Nichol, M. Disney, P. Lewis, T. Quaife, and P. Bowyer, “Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence?” Global Change Biology, vol. 13, no. 7, pp. 1484–1497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. F. Garbulsky, J. Peñuelas, J. Gamon, Y. Inoue, and I. Filella, “The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis,” Remote Sensing of Environment, vol. 115, no. 2, pp. 281–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Demmig-Adams and W. W. Adams, “Harvesting sunlight safely,” Nature, vol. 403, no. 6768, pp. 371–374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Morosinotto, S. Caffarri, L. Dall'Osto, and R. Bassi, “Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids,” Physiologia Plantarum, vol. 119, no. 3, pp. 347–354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Baroli, K. K. Niyogi, J. Barber, and P. Heifetz, “Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants,” Philosophical Transactions of the Royal Society B, vol. 355, no. 1402, pp. 1385–1394, 2000. View at Google Scholar · View at Scopus
  21. W. Bilger, O. Björkman, and S. S. Thayer, “Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves,” Plant Physiology, vol. 91, no. 2, pp. 542–551, 1989. View at Google Scholar
  22. J. A. Gamon, C. B. Field, W. Bilger, O. Björkman, A. L. Fredeen, and J. Peñuelas, “Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies,” Oecologia, vol. 85, no. 1, pp. 1–7, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Gamon, J. Peñuelas, and C. B. Field, “A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency,” Remote Sensing of Environment, vol. 41, no. 1, pp. 35–44, 1992. View at Google Scholar · View at Scopus
  24. I. Filella, T. Amaro, J. L. Araus, and J. Peñuelas, “Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI),” Physiologia Plantarum, vol. 96, no. 2, pp. 211–216, 1996. View at Google Scholar · View at Scopus
  25. J. A. Gamon, L. Serrano, and J. S. Surfus, “The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels,” Oecologia, vol. 112, no. 4, pp. 492–501, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Nakaji, R. Ide, K. Takagi et al., “Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan,” Agricultural and Forest Meteorology, vol. 148, no. 5, pp. 776–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Nichol, K. F. Huemmrich, T. A. Black et al., “Remote sensing of photosynthetic-light-use efficiency of boreal forest,” Agricultural and Forest Meteorology, vol. 101, no. 2-3, pp. 131–142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Nichol, J. Lloyd, O. Shibistova et al., “Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest,” Tellus, Series B, vol. 54, no. 5, pp. 677–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. F. G. Hall, T. Hilker, N. C. Coops et al., “Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction,” Remote Sensing of Environment, vol. 112, no. 7, pp. 3201–3211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Hilker, N. C. Coops, F. G. Hall et al., “Separating physiologically and directionally induced changes in PRI using BRDF models,” Remote Sensing of Environment, vol. 112, no. 6, pp. 2777–2788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. G. G. Drolet, K. F. Huemmrich, F. G. Hall et al., “A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest,” Remote Sensing of Environment, vol. 98, no. 2-3, pp. 212–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. N. C. Coops, T. Hilker, F. G. Hall, C. J. Nichol, and G. G. Drolet, “Estimation of light-use efficiency of terrestrial ecosystems from space: a status report,” BioScience, vol. 60, no. 10, pp. 788–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. C. Black and X. Guo, “Estimation of grassland CO2 exchange rates using hyperspectral remote sensing techniques,” International Journal of Remote Sensing, vol. 29, no. 1, pp. 145–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Louis, A. Ounis, J. M. Ducruet et al., “Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery,” Remote Sensing of Environment, vol. 96, no. 1, pp. 37–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Guo and C. M. Trotter, “Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species,” Functional Plant Biology, vol. 31, no. 3, pp. 255–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. R. Garrity, J. U. H. Eitel, and L. A. Vierling, “Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content,” Remote Sensing of Environment, vol. 115, no. 2, pp. 628–635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Z. Dobrowski, J. C. Pushnik, P. J. Zarco-Tejada, and S. L. Ustin, “Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale,” Remote Sensing of Environment, vol. 97, no. 3, pp. 403–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Suárez, P. J. Zarco-Tejada, G. Sepulcre-Cantó et al., “Assessing canopy PRI for water stress detection with diurnal airborne imagery,” Remote Sensing of Environment, vol. 112, no. 2, pp. 560–575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Ripullone, A. R. Rivelli, R. Baraldi et al., “Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses,” Functional Plant Biology, vol. 38, no. 3, pp. 177–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Sun, A. Grignetti, S. Liu et al., “Associated changes in physiological parameters and spectral reflectance indices in olive (Olea europaea L.) leaves in response to different levels of water stress,” International Journal of Remote Sensing, vol. 29, no. 6, pp. 1725–1743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Govindjee, “63 years since Kautsky—chlorophyll a fluorescence,” Australian Journal of Plant Physiology, vol. 22, no. 2, pp. 131–160, 1995. View at Google Scholar
  42. K. Maxwell and G. N. Johnson, “Chlorophyll fluorescence - A practical guide,” Journal of Experimental Botany, vol. 51, no. 345, pp. 659–668, 2000. View at Google Scholar · View at Scopus
  43. G. C. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Springer, Dordrecht, The Netherlands, 2004.
  44. C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica, vol. 38, no. 4, pp. 483–491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Müller, X. P. Li, and K. K. Niyogi, “Non-photochemical quenching. A response to excess light energy,” Plant Physiology, vol. 125, no. 4, pp. 1558–1566, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. G. C. Papageorgiou, M. Tsimilli-Michael, and K. Stamatakis, “The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint,” Photosynthesis Research, vol. 94, no. 2-3, pp. 275–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. H. K. Lichtenthaler, A. Ač, M. V. Marek, J. Kalina, and O. Urban, “Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species,” Plant Physiology and Biochemistry, vol. 45, no. 8, pp. 577–588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Ač, Z. Malenovský, J. Hanuš, I. Tomášková, O. Urban, and M. V. Marek, “Near-distance imaging spectroscopy investigating chlorophyll fluorescence and photosynthetic activity of grassland in the daily course,” Functional Plant Biology, vol. 36, no. 11, pp. 1006–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. J. Zarco-Tejada, J. R. Miller, G. H. Mohammed, and T. L. Noland, “Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation,” Remote Sensing of Environment, vol. 74, no. 3, pp. 582–595, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. P. J. Zarco-Tejada, J. R. Miller, G. H. Mohammed, T. L. Noland, and P. H. Sampson, “Chlorophyll fluorescence effects on vegetation apparent reflectance: II. Laboratory and Airborne canopy-level measurements with hyperspectral data,” Remote Sensing of Environment, vol. 74, no. 3, pp. 596–608, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. G. A. Carter, J. H. Jones, R. J. Mitchell, and C. H. Brewer, “Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer Line Radiometer,” Remote Sensing of Environment, vol. 55, no. 1, pp. 89–92, 1996. View at Google Scholar · View at Scopus
  52. J. Flexas, J. M. Briantais, Z. Cerovic, H. Medrano, and I. Moya, “Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system,” Remote Sensing of Environment, vol. 73, no. 3, pp. 283–297, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Flexas, J. M. Escalona, S. Evain et al., “Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C-3 plants,” Physiologia Plantarum, vol. 114, no. 2, pp. 231–240, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Freedman, J. Cavender-Bares, P. L. Kebabian, R. Bhaskar, H. Scott, and F. A. Bazzaz, “Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate,” Photosynthetica, vol. 40, no. 1, pp. 127–132, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Soukupová, L. Cséfalvay, O. Urban et al., “Annual variation of the steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone,” Functional Plant Biology, vol. 35, no. 1, pp. 63–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. O. Perez-Priego, P. J. Zarco-Tejada, J. R. Miller, G. Sepulcre-Cantó, and E. Fereres, “Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the O-2-A band,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 12, pp. 2860–2868, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. J. A. Plascyk, “MK II frauenhofer line discriminator (FLD-II) for airborne and orbital remote-sensing of solar-stimulated luminescence,” Optical Engineering, vol. 14, no. 4, pp. 339–346, 1975. View at Google Scholar · View at Scopus
  58. E. M. Middleton, Y. B. Cheng, T. Hilker et al., “Linking foliage spectral responses to canopy-level ecosystem photosynthetic light-use efficiency at a Douglas-fir forest in Canada,” Canadian Journal of Remote Sensing, vol. 35, no. 2, pp. 166–188, 2009. View at Google Scholar · View at Scopus
  59. Y. B. Cheng, E. M. Middleton, T. Hilker, N. C. Coops, T. A. Black, and P. Krishnan, “Dynamics of spectral bio-indicators and their correlations with light use efficiency using directional observations at a douglas-fir forest,” Measurement Science and Technology, vol. 20, no. 9, Article ID 095107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. D. A. Fuentes, J. A. Gamon, Y. Cheng et al., “Mapping carbon and water vapor fluxes in a chaparral ecosystem using vegetation indices derived from AVIRIS,” Remote Sensing of Environment, vol. 103, no. 3, pp. 312–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. F. Rahman, J. A. Gamon, D. A. Fuentes, D. A. Roberts, and D. Prentiss, “Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery,” Journal of Geophysical Research D, vol. 106, no. 24, pp. 33579–33591, 2001. View at Google Scholar · View at Scopus
  62. O. Urban, A. Ač, J. Kalina et al., “Temperature dependences of carbon assimilation processes in four dominant species from mountain grassland ecosystem,” Photosynthetica, vol. 45, no. 3, pp. 392–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. O. Urban, D. Janous, M. Acosta et al., “Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation,” Global Change Biology, vol. 13, no. 1, pp. 157–168, 2007. View at Google Scholar
  64. T. M. Lillesand and R. W. Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, New York, NY, USA, 4th edition, 2000.
  65. K. Havránková and P. Sedlák, “Wind velocity analysis for mountainous Site Bílý Kříž,” Ekologia Bratislava, vol. 23, no. 2, pp. 46–54, 2004. View at Google Scholar · View at Scopus
  66. M. Aubinet, A. Grelle, A. Ibrom et al., “Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology,” Advances in Ecological Research C, vol. 30, pp. 113–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. H. K. Lichtenthaler, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes,” Methods in Enzymology C, vol. 148, pp. 350–382, 1987. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Štroch, K. Kuldová, J. Kalina, and V. Špunda, “Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance,” Journal of Plant Physiology, vol. 165, no. 6, pp. 612–622, 2008. View at Google Scholar
  69. H. Y. Yamamoto, T. O. M. Nakayama, and C. O. Chichester, “Studies on the light and dark interconversions of leaf xanthophylls,” Archives of Biochemistry and Biophysics, vol. 97, no. 1, pp. 168–173, 1962. View at Google Scholar · View at Scopus
  70. A. Färber, A. J. Young, A. V. Ruban, P. Horton, and P. Jahns, “Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants: the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching,” Plant Physiology, vol. 115, no. 4, pp. 1609–1618, 1997. View at Google Scholar · View at Scopus
  71. A. M. Gilmore and O. Bjorkman, “Adenine nucleotides and the xanthophyll cycle in leaves. I.Effects of CO2- and temperature-limited photosynthesis on adenylate energy charge and violaxanthin de-epoxidation,” Planta, vol. 192, no. 4, pp. 526–536, 1994. View at Google Scholar · View at Scopus
  72. C. Buschmann, E. Nagel, K. Szabó, and L. Kocsányi, “Spectrometer for fast measurements of in vivo reflectance, absorptance, and fluorescence in the visible and near-infrared,” Remote Sensing of Environment, vol. 48, no. 1, pp. 18–24, 1994. View at Google Scholar · View at Scopus
  73. H. K. Lichtenthaler, C. Buschmann, and M. Knapp, “How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer,” Photosynthetica, vol. 43, no. 3, pp. 379–393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Demmig-Adams and W. W. Adams, “Carotenoid composition in sun and shade leaves of plants with different life forms,” Plant Cell and Environment, vol. 15, no. 4, pp. 411–419, 1992. View at Google Scholar
  75. P. J. Zarco-Tejada, J. R. Miller, T. L. Noland, G. H. Mohammed, and P. H. Sampson, “Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1491–1507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Peñuelas, I. Filella, and J. A. Gamon, “Assessment of photosynthetic radiation-use efficiency with spectral reflectance,” New Phytologist, vol. 131, no. 3, pp. 291–296, 1995. View at Google Scholar · View at Scopus
  77. J. L. Monteith, “Climate and efficiency of crop production in britain,” Philosophical Transaction of Royal Society B, vol. 281, no. 980, pp. 277–294, 1977. View at Google Scholar
  78. K. K. Niyogi, “Photoprotection revisited: genetic and molecular approaches,” Annual Review of Plant Biology, vol. 50, pp. 333–359, 1999. View at Google Scholar · View at Scopus
  79. C. Schindler and H. K. Lichtenthaler, “Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day,” Journal of Plant Physiology, vol. 148, no. 3-4, pp. 399–412, 1996. View at Google Scholar · View at Scopus
  80. B. Demmig-Adams and W. W. Adams, “The role of xanthophyll cycle carotenoids in the protection of photosynthesis,” Trends in Plant Science, vol. 1, no. 1, pp. 21–26, 1996. View at Google Scholar · View at Scopus
  81. U. Heber, “Conformational changes of chloroplasts induced by illumination of leaves in vivo,” Biochimica et Biophysica Acta, vol. 180, no. 2, pp. 302–319, 1969. View at Google Scholar · View at Scopus
  82. A. Porcar-Castell, J. Peñuelas, S. M. Owen, J. Llusià, S. Munné-Bosch, and J. Bäck, “Leaf carotenoid concentrations and monoterpene emission capacity under acclimation of the light reactions of photosynthesis,” Boreal Environment Research, vol. 14, no. 4, pp. 794–806, 2009. View at Google Scholar · View at Scopus
  83. Y. Inoue and J. Peñuelas, “Relationship between light use efficiency and photochemical reflectance index in soybean leaves as affected by soil water content,” International Journal of Remote Sensing, vol. 27, no. 22, pp. 5109–5114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. S. V. Ollinger, “Sources of variability in canopy reflectance and the convergent properties of plants,” New Phytologist, vol. 189, no. 2, pp. 375–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Hernandez-Clemente, R. M. Navarro-Cerrillo, L. Suarez, F. Morales, and P. J. Zarco-Tejada, “Assessing structural effects on PRI for stress detection in conifer forests,” Remote Sensing of Environment, vol. 115, no. 9, pp. 2360–2375, 2011. View at Google Scholar
  86. G. A. Carter, “Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies,” Remote Sensing of Environment, vol. 63, no. 1, pp. 61–72, 1998. View at Publisher · View at Google Scholar · View at Scopus