Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 718791, 12 pages
http://dx.doi.org/10.1100/2012/718791
Research Article

A Study on Solubilization of Poorly Soluble Drugs by Cyclodextrins and Micelles: Complexation and Binding Characteristics of Sulfamethoxazole and Trimethoprim

General Chemistry Division, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Uskudar, 34668 Istanbul, Turkey

Received 22 October 2011; Accepted 7 December 2011

Academic Editors: Y. V. Nageswar and P. Zakeri-Milani

Copyright © 2012 Sinem Göktürk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. He and S. H. Yalkowsky, “Solubilization of monovalent weak electrolytes by micellization or complexation,” International Journal of Pharmaceutics, vol. 314, no. 1, pp. 15–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Sweetana and M. J. Akers, “Solubility principles and practices for parenteral drug dosage form development,” PDA Journal of Pharmaceutical Science and Technology, vol. 50, no. 5, pp. 330–342, 1996. View at Google Scholar · View at Scopus
  3. P. Li, S. E. Tabibi, and S. H. Yalkowsky, “Solubilization of flavopiridol by pH control combined with cosolvents, surfactants, or complexants,” Journal of Pharmaceutical Sciences, vol. 88, no. 9, pp. 945–947, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. T. Florence and D. Atwood, Physicochemical Principles of Pharmacy, Pharmaceutical Press, London, UK, 3rd edition, 1998.
  5. D. O. Thompson, “Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 14, no. 1, pp. 1–104, 1997. View at Google Scholar · View at Scopus
  6. R. Challa, A. Ahuja, J. Ali, and R. K. Khar, “Cyclodextrins in drug delivery: an updated review,” AAPS PharmSciTech, vol. 6, no. 2, pp. E329–357, 2005. View at Google Scholar · View at Scopus
  7. M. E. Davis and M. E. Brewster, “Cyclodextrin-based pharmaceutics: past, present and future,” Nature Reviews Drug Discovery, vol. 3, no. 12, pp. 1023–1035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Loftsson, M. E. Brewster, and M. Másson, “Role of cyclodextrins in improving oral drug delivery,” American Journal of Drug Delivery, vol. 2, no. 4, pp. 261–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Loftsson and M. Masson, “Cyclodextrins in topical drug formulations: theory and practice,” International Journal of Pharmaceutics, vol. 225, no. 1-2, pp. 15–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Szejtli, Cyclodextrin Technology, Kluwer Academic Publisher, Dordrecht, Germany, 1988.
  11. V. J. Stella and R. A. Rajewski, “Cyclodextrins: their future in drug formulation and delivery,” Pharmaceutical Research, vol. 14, no. 5, pp. 556–567, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Loftsson and M. E. Brewster, “Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization,” Journal of Pharmaceutical Sciences, vol. 85, no. 10, pp. 1017–1025, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. L. Wei, L. H. Ding, C. Dong, W. P. Niu, and S. M. Shuang, “Study on inclusion complex of cyclodextrin with methyl xanthine derivatives by fluorimetry,” Spectrochimica Acta Part A, vol. 59, no. 12, pp. 2697–2703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Mura, F. Maestrelli, and M. Cirri, “Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids,” International Journal of Pharmaceutics, vol. 260, no. 2, pp. 293–302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. V. M. Rao, M. Nerurkar, S. Pinnamaneni, F. Rinaldi, and K. Raghavan, “Co-solubilization of poorly soluble drugs by micellization and complexation,” International Journal of Pharmaceutics, vol. 319, no. 1-2, pp. 98–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Jullian, T. Orosteguis, F. Pérez-Cruz, P. Sánchez, F. Mendizabal, and C. Olea-Azar, “Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study,” Spectrochimica Acta Part A, vol. 71, no. 1, pp. 269–275, 2008. View at Publisher · View at Google Scholar
  17. M. M. Al Omari, M. I. El-Barghouthi, M. B. Zughul, J. E. D. Davies, and A. A. Badwan, “Comparative study of the inclusion complexation of pizotifen and ketotifen with native and modified cyclodextrins,” Journal of Solution Chemistry, vol. 37, no. 2, pp. 249–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. M. Martin Del Vale, “Cyclodextrins and their uses: a review,” Process Biochemistry, vol. 39, pp. 1033–1046, 2004. View at Google Scholar
  19. T. Loftsson and D. Duchêne, “Cyclodextrins and their pharmaceutical applications,” International Journal of Pharmaceutics, vol. 329, no. 1-2, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Loftsson, “Cyclodextrins and the biopharmaceutics classification system of drugs,” Journal of Inclusion Phenomena, vol. 44, no. 1–4, pp. 63–67, 2002. View at Publisher · View at Google Scholar
  21. T. Loftsson and M. E. Brewster, “Pharmaceutical applications of cyclodextrins: basic science and product development,” Journal of Pharmacy and Pharmacology, vol. 62, no. 11, pp. 1607–1621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. O. Rangel-Yagui, A. Pessoa, and L. C. Tavares, “Micellar solubilization of drugs,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 2, pp. 147–163, 2005. View at Google Scholar · View at Scopus
  23. W. Caetano and M. Tabak, “Interaction of chlorpromazine and trifluoperazine with anionic sodium dodecyl sulfate (SDS) micelles: electronic absorption and fluorescence studies,” Journal of Colloid and Interface Science, vol. 225, no. 1, pp. 69–81, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Čudina, J. Brborić, I. Janković, K. Karljiković-Rajić, and S. Vladimirov, “Study of valsartan interaction with micelles as a model system for biomembranes,” Colloids and Surfaces B, vol. 65, no. 1, pp. 80–84, 2008. View at Publisher · View at Google Scholar
  25. S. Göktürk, R. Y. Talman, N. Erdinç, and M. Tunçay, “Solution behaviour of rivanol in micellar environments,” Spectroscopy Letters, vol. 39, no. 4, pp. 357–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Erdinç, S. Göktürk, and M. Tunçay, “Interaction of epirubicin HCl with surfactants: effect of NaCl and glucose,” Journal of Pharmaceutical Sciences, vol. 93, no. 6, pp. 1566–1576, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Enache and E. Volanschi, “Spectral studies on the molecular interaction of anticancer drug mitoxantrone with CTAB micelles,” Journal of Pharmaceutical Sciences, vol. 100, no. 2, pp. 558–565, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. F. A. Alvarez-Núñez and S. H. Yalkowsky, “Relationship between Polysorbate 80 solubilization descriptors and octanol-water partition coefficients of drugs,” International Journal of Pharmaceutics, vol. 200, no. 2, pp. 217–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. O. I. Corrigan and A. M. Healy, “Surfactants in pharmaceutical products and systems,” in Encyclopedia of Pharmaceutical Technology, J. Swarbrick and J. C. Baylan, Eds., pp. 2639–2653, Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  30. S. H. Park and H. K. Choi, “The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs,” International Journal of Pharmaceutics, vol. 321, no. 1-2, pp. 35–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Yang, N. Jain, and S. H. Yalkowsky, “Combined effect of SLS and (SBE)7M-β-CD on the solubilization of NSC-639829,” International Journal of Pharmaceutics, vol. 269, no. 1, pp. 141–148, 2004. View at Publisher · View at Google Scholar
  32. I. Ullah, M. K. Baloch, and G. F. Durrani, “Solubility of nonsteroidal anti-inflammatory drugs (NSAIDs) in aqueous solutions of non-ionic surfactants,” Journal of Solution Chemistry, vol. 40, no. 7, pp. 1341–1348, 2011. View at Publisher · View at Google Scholar
  33. T. A. Higuchi and K. A. Connors, “Phase-solubility techniques,” Advances in Analytical Chemistry and Instrumentation, vol. 4, pp. 117–122, 1965. View at Google Scholar
  34. H. A. Benesi and J. H. Hildebrand, “A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons,” Journal of the American Chemical Society, vol. 71, no. 8, pp. 2703–2707, 1949. View at Google Scholar · View at Scopus
  35. Q. X. Guo, H. Y. Liu, X. Q. Ruan, X. Q. Zheng, Y. Y. Shi, and Y. C. Liu, “Experimental and theoretical studies on the inclusion complexation of β-cyclodextrin with phenothiazine derivatives,” Journal of Inclusion Phenomena, vol. 35, no. 3, pp. 487–496, 1999. View at Google Scholar · View at Scopus
  36. S. Göktürk and M. Tunçay, “Spectral studies of safranin-O in different surfactant solutions,” Spectrochimica Acta Part A, vol. 59, no. 8, pp. 1857–1866, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. S. H. Yalkowsky and S. Banerjee, Aqueous Solubility, Methods of Estimation for Organic Compounds, Marcel Dekker, New York, NY, USA, 1992.
  38. K. Iga, A. Hussain, and T. Kashihara, “New direct calculation of K(1:1) and K(1:2) complexation constants using solubility method,” Journal of Pharmaceutical Sciences, vol. 70, no. 1, pp. 108–109, 1981. View at Google Scholar · View at Scopus
  39. K. Kawakami, K. Miyoshi, and Y. Ida, “Solubilization behavior of poorly soluble drugs with combined use of Gelucire 44/14 and cosolvent,” Journal of Pharmaceutical Sciences, vol. 93, no. 6, pp. 1471–1479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Zhou and D. E. Moore, “Photosensitizing activity of the anti-bacterial drugs sulfamethoxazole and trimethoprim,” Journal of Photochemistry and Photobiology B, vol. 39, no. 1, pp. 63–72, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Nakagaki, N. Koga, and H. Tereda, “Physicochemical studies on the binding of chemicals with proteins. I. The binding of several sulfonamides with serum albumin,” Journal of the Pharmaceutical Society of Japan, vol. 83, pp. 586–590, 1963. View at Google Scholar
  42. L. D. Nghiem, A. I. Schäfer, and M. Elimelech, “Pharmaceutical retention mechanisms by nanofiltration membranes,” Environmental Science and Technology, vol. 39, no. 19, pp. 7698–7705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Uekama and T. Irie, “Pharmaceutical applications of methylated cyclodextrin derivatives,” in Cyclodextrins and Their Industrial Uses, D. Duchene, Ed., Editions de Sante, Paris, France, 1987. View at Google Scholar
  44. T. Irie and K. Uekama, “Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation,” Journal of Pharmaceutical Sciences, vol. 86, no. 2, pp. 147–162, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Velasco, C. Carmona, M. A. Muñoz, P. Guardado, and M. Balón, “Influence of the cyclodextrin size cavity in the complexation of tetrahydroharmane,” Journal of Inclusion Phenomena, vol. 35, no. 4, pp. 637–648, 1999. View at Google Scholar · View at Scopus
  46. D. Dolar, K. Košutic, D. M. Pavlovic, and B. Kunst, “Removal of emerging contaminants of industrial origin by NF/RO—a pilot scale study,” Desalination and Water Treatment, vol. 6, no. 1–3, pp. 197–203, 2009. View at Google Scholar · View at Scopus
  47. A. M. Comerton, R. C. Andrews, D. M. Bagley, and C. Hao, “The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties,” Journal of Membrane Science, vol. 313, no. 1-2, pp. 323–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. M. Stalcup, S. C. Chang, D. W. Armstrong, and J. Pitha, “(S)-2-Hydroxypropyl-β-cyclodextrin, a new chiral stationary phase for reversed-phase liquid chromatography,” Journal of Chromatography, vol. 513, pp. 181–194, 1990. View at Publisher · View at Google Scholar · View at Scopus