Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 728189, 6 pages
http://dx.doi.org/10.1100/2012/728189
Research Article

The Effects of Subchronic Exposure to Metribuzin on Danio rerio

1Department of Veterinary Public Health and Toxicology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
2Department of Pathological Morphology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic

Received 26 March 2012; Accepted 12 April 2012

Academic Editors: K. Ameno, P. M. Badot, and J. Pungercar

Copyright © 2012 Lucie Plhalova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. T. Stevens, C. B. Breckenridge, J. Simpkins, and J. C. Eldridge, “Symmetrical and asymmetrical triazine herbicides,” in Handbook of Pesticide Toxicology, R. Krieger, Ed., pp. 1511–1519, Academic Press, San Diego, Calif, USA, 2nd edition, 2001. View at Google Scholar
  2. T. R. Roberts, D. H. Hutson, P. W. Lee, P. H. Nicholls, and J. R. Plimmer, Metabolic Pathways of Agrochemicals, Part 1: Herbicides and Plant Growth Regulators, The Royal Society of Chemistry, Cambridge, UK, 1st edition, 1998.
  3. B. D. Pauli, R. A. Kent, and M. P. Wong, Canadian water quality guidelines for metribuzin, Environment Canada Scientific Series no. 179, Inland Waters Directorate, Water Quality Branch, 1990.
  4. R. Carabias-Martínez, E. Rodríguez-Gonzalo, M. E. Fernández-Laespada, L. Calvo-Seronero, and F. J. Sánchez-San Román, “Evolution over time of the agricultural pollution of waters in an area of Salamanca and Zamora (Spain),” Water Research, vol. 37, no. 4, pp. 928–938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Belmonte Vega, A. Garrido Frenich, and J. L. Martínez Vidal, “Monitoring of pesticides in agricultural water and soil samples from Andalusia by liquid chromatography coupled to mass spectrometry,” Analytica Chimica Acta, vol. 538, no. 1-2, pp. 117–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Maloschik, A. Ernst, G. Hegedus, B. Darvas, and A. Székács, “Monitoring water-polluting pesticides in Hungary,” Microchemical Journal, vol. 85, no. 1, pp. 88–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Noppe, A. Ghekiere, T. Verslycke et al., “Distribution and ecotoxicity of chlorotriazines in the Scheldt Estuary (B-Nl),” Environmental Pollution, vol. 147, no. 3, pp. 668–676, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Quednow and W. Püttmann, “Monitoring terbutryn pollution in small rivers of Hesse, Germany,” Journal of Environmental Monitoring, vol. 9, no. 12, pp. 1337–1343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. F. G. C. Dores, S. Navickiene, M. L. F. Cunha, L. Carbo, M. L. Ribeiro, and E. M. De-Lamonica-Freire, “Multiresidue determination of herbicides in environmental waters from Primavera do Leste region (Middle West of Brazil) by SPE-GC-NPD,” Journal of the Brazilian Chemical Society, vol. 17, no. 5, pp. 866–873, 2006. View at Google Scholar · View at Scopus
  10. J. F. Fairchild and L. C. Sappington, “Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms,” Archives of Environmental Contamination and Toxicology, vol. 43, no. 2, pp. 198–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Fairchild, D. S. Ruessler, and A. R. Carlson, “Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor,” Environmental Toxicology and Chemistry, vol. 17, no. 9, pp. 1830–1834, 1998. View at Google Scholar · View at Scopus
  12. D. A. Alvarez, J. D. Petty, J. N. Huckins et al., “Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments,” Environmental Toxicology and Chemistry, vol. 23, no. 7, pp. 1640–1648, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. E. W. Steinberg, R. Lorenz, and O. H. Spieser, “Effects of atrazine on swimming behavior of zebrafish, Brachydanio rerio,” Water Research, vol. 29, no. 3, pp. 981–985, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Saglio and S. Trijasse, “Behavioral responses to atrazine and diuron in goldfish,” Archives of Environmental Contamination and Toxicology, vol. 35, no. 3, pp. 484–491, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Nieves-Puigdoller, B. T. Björnsson, and S. D. McCormick, “Effects of hexazinone and atrazine on the physiology and endocrinology of smolt development in Atlantic salmon,” Aquatic Toxicology, vol. 84, no. 1, pp. 27–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Tryfonos, E. Antonopoulou, C. Papaefthimiou, G. Chaleplis, and G. Theophilidis, “An in vitro assay for the assessment of the effects of an organophosphate, paraoxon, and a triazine, atrazine, on the heart of the gilthead sea bream (Sparus aurata),” Pesticide Biochemistry and Physiology, vol. 93, no. 1, pp. 40–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Velisek, A. Stara, J. Kolarova, and Z. Svobodova, “Biochemical, physiological and morfological responses in common carp (Cyprinus carpio L.) after long-term exposure to terbutryn in real environmental concentration,” Pesticide Biochemistry and Physiology, vol. 100, no. 3, pp. 305–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Lele and P. H. Krone, “The zebrafish as a model system in developmental, toxicological and transgenic research,” Biotechnology Advances, vol. 14, no. 1, pp. 57–72, 1996. View at Google Scholar · View at Scopus
  19. J. Martins, L. Oliva Teles, and V. Vasconcelos, “Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology,” Environment International, vol. 33, no. 3, pp. 414–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Kienle, H. R. Köhler, and A. Gerhardt, “Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae,” Ecotoxicology and Environmental Safety, vol. 72, no. 6, pp. 1740–1747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Perreau and J. Einhorn, “Determination of frequently detected herbicides in water by solid-phase microextraction and gas chromatography coupled to ion-trap tandem mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 386, no. 5, pp. 1449–1456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  23. Z. Široká, J. Krijt, T. Randák et al., “Organic pollutant contamination of the River Elbe as assessed by biochemical markers,” Acta Veterinaria Brno, vol. 74, no. 2, pp. 293–303, 2005. View at Google Scholar · View at Scopus
  24. F. L. Mayer and M. R. Ellersieck, “Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals,” Resource Publication - US Fish & Wildlife Service, vol. 160, 1986. View at Google Scholar · View at Scopus
  25. C. R. Worthing and S. B. Walker, Eds., The Pesticide Manual: A World Compendium, The British Crop Protection Council, Croydon, UK, 7th edition, 1987.
  26. J. Velisek, Z. Svobodova, V. Piackova et al., “Effects of metribuzin on rainbow trout (Oncorhynchus mykiss),” Veterinarni Medicina, vol. 53, no. 6, pp. 324–332, 2008. View at Google Scholar · View at Scopus
  27. J. Velisek, Z. Svobodova, V. Piackova, and E. Sudova, “Effects of acute exposure to metribuzin on some hematological, biochemical and histopathological parameters of common carp (Cyprinus carpio L.),” Bulletin of Environmental Contamination and Toxicology, vol. 82, no. 4, pp. 492–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Modra, I. Haluzova, J. Blahova et al., “Effects of subchronic metribuzin exposure on common carp (Cyprinus carpio),” Neuroendocrinology Letters, vol. 29, no. 5, pp. 669–674, 2008. View at Google Scholar · View at Scopus
  29. J. Velisek, E. Sudova, J. Machova, and Z. Svobodova, “Effects of sub-chronic exposure to terbutryn in common carp (Cyprinus carpio L.),” Ecotoxicology and Environmental Safety, vol. 73, no. 3, pp. 384–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. I. Arufe, J. Arellano, M. J. Moreno, and C. Sarasquete, “Comparative toxic effects of formulated simazine on Vibrio fischeri and gilthead seabream (Sparus aurata L.) larvae,” Chemosphere, vol. 57, no. 11, pp. 1725–1732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Oulmi, R. D. Negele, and T. Braunbeck, “Segment specificity of the cytological response in rainbow trout (Oncorhynchus mykiss) renal tubules following prolonged exposure to sublethal concentrations of atrazine,” Ecotoxicology and Environmental Safety, vol. 32, no. 1, pp. 39–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Fischer-Scherl, A. Veeser, R. W. Hoffmann, C. Kuhnhauser, R. D. Negele, and T. Ewringmann, “Morphological effects of acute and chronic atrazine exposure in rainbow trout (Oncorhynchus mykiss),” Archives of Environmental Contamination and Toxicology, vol. 20, no. 4, pp. 454–461, 1991. View at Google Scholar · View at Scopus
  33. C. L. Miranda, J. L. Wang, H. S. Chang, and D. R. Buhler, “Multiple effects of 3,4,5,3′,4′,5′-hexachlorobiphenyl administration on hepatic cytochrome P450 isozymes and associated mixed-function oxidase activities in rainbow trout,” Biochemical Pharmacology, vol. 40, no. 2, pp. 387–390, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Van der Oost, J. Beyer, and N. P. E. Vermeulen, “Fish bioaccumulation and biomarkers in environmental risk assessment: a review,” Environmental Toxicology and Pharmacology, vol. 13, no. 2, pp. 57–149, 2003. View at Publisher · View at Google Scholar · View at Scopus