Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 741861, 17 pages
http://dx.doi.org/10.1100/2012/741861
Review Article

Oxidative Stress and Heart Failure in Altered Thyroid States

1Department of Zoology, Utkal University, Odisha, Bhubaneswar 751004, India
2Department of Zoology, Ravenshaw University, Odisha, Cuttack 753003, India

Received 31 October 2011; Accepted 25 December 2011

Academic Editors: B. Biondi, L. Lanfrancone, E. Skalidis, and F. Thuny

Copyright © 2012 Pallavi Mishra and Luna Samanta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Klein and K. Ojamaa, “Editorial: thyroid hormone—targeting the heart,” Endocrinology, vol. 142, no. 1, pp. 11–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Fernandez, X. Barrientos, and K. Kipreos, “Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation,” Endocrinology, vol. 117, no. 2, pp. 496–501, 1985. View at Google Scholar · View at Scopus
  3. K. Asayama, K. Dobashi, H. Hayashibe, Y. Megata, and K. Kato, “Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism,” Endocrinology, vol. 121, no. 6, pp. 2112–2118, 1987. View at Google Scholar · View at Scopus
  4. A. Swaroop and T. Ramasarma, “Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria,” Biochemical Journal, vol. 226, no. 2, pp. 403–408, 1985. View at Google Scholar · View at Scopus
  5. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 3rd edition, 2001.
  6. J. Nordberg and E. S. J. Arnér, “Reactive oxygen species, antioxidants, and the mammalian thioredoxin system,” Free Radical Biology and Medicine, vol. 31, no. 11, pp. 1287–1312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Conrad, C. Jakupoglu, S. G. Moreno et al., “Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function,” Molecular and Cellular Biology, vol. 24, no. 21, pp. 9414–9423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. B. Sawyer, D. A. Siwik, L. Xiao, D. R. Pimentel, K. Singh, and W. S. Colucci, “Role of oxidative stress in myocardial hypertrophy and failure,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 4, pp. 379–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. V. J. Thannickal and B. L. Fanburg, “Reactive oxygen species in cell signaling,” American Journal of Physiology, vol. 279, no. 6, pp. L1005–L1028, 2000. View at Google Scholar · View at Scopus
  10. K. K. Griendling and G. A. FitzGerald, “Oxidative stress and cardiovascular injury part I: basic mechanisms and in vivo monitoring of ROS,” Circulation, vol. 108, no. 16, pp. 1912–1916, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Machida, T. Kubota, N. Kawamura et al., “Overexpression of tumor necrosis factor-α increases production of hydroxyl radical in murine myocardium,” American Journal of Physiology, vol. 284, no. 2, pp. H449–H455, 2003. View at Google Scholar · View at Scopus
  12. A. Sabri, H. H. Hughie, and P. A. Lucchesi, “Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes,” Antioxidants and Redox Signaling, vol. 5, no. 6, pp. 731–740, 2003. View at Google Scholar · View at Scopus
  13. S. Hirotani, K. Otsu, K. Nishida et al., “Involvement of nuclear factor-κB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy,” Circulation, vol. 105, no. 4, pp. 509–515, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. T. C. Hsu, M. R. Young, J. Cmarik, and N. H. Colburn, “Activator protein 1 (AP-1)- and nuclear factor κB (NF-κB)-dependent transcriptional events in carcinogenesis,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1338–1348, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. K. T. Turpaev, “Reactive oxygen species and regulation of gene expression,” Biochemistry (Moscow), vol. 67, no. 3, pp. 281–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. G. N. Rao, R. W. Alexander, and M. S. Runge, “Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-fos, c-jun, and c-myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells,” Journal of Clinical Investigation, vol. 96, no. 2, pp. 842–847, 1995. View at Google Scholar · View at Scopus
  17. N. Rathore, S. John, M. Kale, and D. Bhatnagar, “Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues,” Pharmacological Research, vol. 38, no. 4, pp. 297–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Thollon, J. P. Iliou, C. Cambarrat, F. Robin, and J. P. Vilaine, “Nature of the cardiomyocyte injury induced by lipid hydroperoxides,” Cardiovascular Research, vol. 30, no. 5, pp. 648–655, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. T. D. Lockwood, “Redox control of protein degradation,” Antioxidants and Redox Signaling, vol. 2, no. 4, pp. 851–878, 2000. View at Google Scholar · View at Scopus
  20. E. R. Stadtman and R. L. Levine, “Free radical-mediated oxidation of free amino acids and amino acid residues in proteins,” Amino Acids, vol. 25, no. 3-4, pp. 207–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Rahman, “Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 1, pp. 95–109, 2003. View at Google Scholar · View at Scopus
  22. G. W. Konat, “H2O2-induced higher order chromatin degradation: a novel mechanism of oxidative genotoxicity,” Journal of Biosciences, vol. 28, no. 1, pp. 57–60, 2003. View at Google Scholar · View at Scopus
  23. D. A. Sinclair, “Paradigms and pitfalls of yeast longevity research,” Mechanisms of Ageing and Development, vol. 123, no. 8, pp. 857–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. E. G. Lakatta, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part III: cellular and molecular clues to heart and arterial aging,” Circulation, vol. 107, no. 3, pp. 490–497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. López-Torres, M. Romero, and G. Barja, “Effect of thyroid hormones on mitochondrial oxygen free radical production and DNA oxidative damage in the rat heart,” Molecular and Cellular Endocrinology, vol. 168, no. 1-2, pp. 127–134, 2000. View at Publisher · View at Google Scholar
  26. P. Venditti, A. Puca, and S. Di Meo, “Effects of thyroid state on H2O2 production by rat heart mitochondria: sites of production with Complex I- and Complex II-linked substrates,” Hormone and Metabolic Research, vol. 35, no. 1, pp. 55–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Tsai and B. W. O'Malley, “Molecular mechanisms of action of steroid/thyroid receptor superfamily members,” Annual Review of Biochemistry, vol. 63, pp. 451–486, 1994. View at Google Scholar · View at Scopus
  28. P. J. Davis and F. B. Davis, “Nongenomic actions of thyroid hormone,” Thyroid, vol. 6, no. 5, pp. 497–504, 1996. View at Google Scholar · View at Scopus
  29. M. E. Everts, F. A. Verhoeven, K. Bezstarosti et al., “Uptake of thyroid hormones in neonatal rat cardiac myocytes,” Endocrinology, vol. 137, no. 10, pp. 4235–4242, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. R. C. J. Ribeiro, J. W. Apriletti, B. L. West et al., “The molecular biology of thyroid hormone action,” Annals of the New York Academy of Sciences, vol. 758, pp. 366–389, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Leng, J. Blanco, S. Y. Tsai, K. Ozato, B. W. O'Malley, and M. J. Tsai, “Mechanisms for synergistic activation of thyroid hormone receptor and retinoid X receptor on different response elements,” The Journal of Biological Chemistry, vol. 269, no. 50, pp. 31436–31442, 1994. View at Google Scholar · View at Scopus
  32. R. W. Tsika, J. J. Bahl, L. A. Leinwand, and E. Morkin, “Thyroid hormone regulates expression of a transfected human α-myosin heavy-chain fusion gene in fetal rat heart cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 1, pp. 379–383, 1990. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Zarain-Herzberg, J. Marques, and D. Sukovich, “Thyroid hormone receptor modulates the expression of the rabbit cardiac sarco(endo)plasmic reticulum Ca2+-ATPase gene,” The Journal of Biological Chemistry, vol. 269, no. 2, pp. 1460–1467, 1994. View at Google Scholar · View at Scopus
  34. J. Orlowski and J. B. Lingrel, “Thyroid and glucocorticoid hormones regulate the expression of multiple Na,K-ATPase genes in cultured neonatal rat cardiac myocytes,” The Journal of Biological Chemistry, vol. 265, no. 6, pp. 3462–3470, 1990. View at Google Scholar · View at Scopus
  35. S. W. Bahouth, “Thyroid hormones transcriptionally regulate the β1-adrenergic receptor gene in cultured ventricular myocytes,” The Journal of Biological Chemistry, vol. 266, no. 24, pp. 15863–15869, 1991. View at Google Scholar · View at Scopus
  36. M. J. Fullerton, S. Stuchbury, Z. S. Krozowski, and J. W. Funder, “Altered thyroidal status and the in vivo synthesis of atrial natriuretic peptide in the rat heart,” Molecular and Cellular Endocrinology, vol. 69, no. 2-3, pp. 227–233, 1990. View at Google Scholar · View at Scopus
  37. V. Averyhart-Fullard, L. D. Fraker, A. M. Murphy, and R. J. Solaro, “Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart,” Journal of Molecular and Cellular Cardiology, vol. 26, no. 5, pp. 609–616, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Morkin, “Regulation of myosin heavy chain genes in the heart,” Circulation, vol. 87, no. 5, pp. 1451–1460, 1993. View at Google Scholar · View at Scopus
  39. J. A. Berliner and J. W. Heinecke, “The role of oxidized lipoproteins in atherogenesis,” Free Radical Biology and Medicine, vol. 20, no. 5, pp. 707–727, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. J. W. Heinecke, “Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis,” Atherosclerosis, vol. 141, no. 1, pp. 1–15, 1998. View at Google Scholar · View at Scopus
  41. D. Li, T. Saldeen, and J. L. Mehta, “Effects of α-tocopherol on ox-LDL-mediated degradation of IκB and apoptosis in cultured human coronary artery endothelial cells,” Journal of Cardiovascular Pharmacology, vol. 36, no. 3, pp. 297–301, 2000. View at Google Scholar
  42. R. S. Rosenson and A. S. Brown, “Statin use in acute coronary syndromes: cellular mechanisms and clinical evidence,” Current Opinion in Lipidology, vol. 13, no. 6, pp. 625–630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. N. M. Ananyeva, A. V. Tjuimin, J. A. Berliner et al., “Oxidized LDL mediates the release of fibroblast growth factor-1,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 3, pp. 445–453, 1997. View at Google Scholar
  44. H. Cai and D. G. Harrison, “Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress,” Circulation Research, vol. 87, no. 10, pp. 840–844, 2000. View at Google Scholar · View at Scopus
  45. M. Takemoto and J. K. Liao, “Pleiotropic effects of 3-hydroxy-3-methyl- glutaryl coenzyme a reductase inhibitors.,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, pp. 1712–1719, 2001. View at Google Scholar
  46. J. M. Herbert, F. Bono, and P. Savi, “The mitogenic effect of H2O2 for vascular smooth muscle cells is mediated by an increase of the affinity of basic fibroblast growth factor for its receptor,” FEBS Letters, vol. 395, no. 1, pp. 43–47, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Ushio-Fukai, K. K. Griendling, P. L. Becker, L. Hilenski, S. Halleran, and R. W. Alexander, “Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 4, pp. 489–495, 2001. View at Google Scholar · View at Scopus
  48. J. Du, M. Brink, T. Peng, B. Mottironi, and P. Delafontaine, “Thrombin regulates insulin-like growth factor-1 receptor transcription in vascular smooth muscle characterization of the signaling pathway,” Circulation Research, vol. 88, no. 10, pp. 1044–1052, 2001. View at Google Scholar · View at Scopus
  49. P. Delafontaine and L. Ku, “Reactive oxygen species stimulate insulin-like growth factor I synthesis in vascular smooth muscle cells,” Cardiovascular Research, vol. 33, no. 1, pp. 216–222, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Rocic, P. Seshiah, and K. K. Griendling, “Reactive oxygen species sensitivity of angiotensin II-dependent translation initiation in vascular smooth muscle cells,” The Journal of Biological Chemistry, vol. 278, no. 38, pp. 36973–36979, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Peiró, N. Lafuente, N. Matesanz et al., “High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide,” British Journal of Pharmacology, vol. 133, no. 7, pp. 967–974, 2001. View at Google Scholar · View at Scopus
  52. J. J. Cheng, B. S. Wung, Y. J. Chao, and D. L. Wang, “Cyclic strain-induced reactive oxygen species involved in ICAM-1 gene induction in endothelial cells,” Hypertension, vol. 31, no. 1, pp. 125–130, 1998. View at Google Scholar · View at Scopus
  53. X. Zeng, J. Dai, D. G. Remick, and X. Wang, “Homocysteine mediated expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human monocytes,” Circulation Research, vol. 93, no. 4, pp. 311–320, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Cominacini, U. Garbin, A. F. Pasini et al., “Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical vein endothelial cells,” Free Radical Biology and Medicine, vol. 22, no. 1-2, pp. 117–127, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Hennig, M. Toborek, and C. J. McClain, “High-energy diets, fatty acids and endothelial cell function: implications for atherosclerosis,” Journal of the American College of Nutrition, vol. 20, no. 2, pp. 97–105, 2001. View at Google Scholar · View at Scopus
  56. A. Mertens, P. Verhamme, J. K. Bielicki et al., “Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis,” Circulation, vol. 107, no. 12, pp. 1640–1646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Yamaguchi, S. Matsuno, S. Kagota, J. Haginaka, and M. Kunitomo, “Fluvastatin reduces modification of low-density lipoprotein in hyperlipidemic rabbit loaded with oxidative stress,” European Journal of Pharmacology, vol. 436, no. 1-2, pp. 97–105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. L. E. Schreier, S. Sanguinetti, H. Mosso, G. I. Lopez, L. Siri, and R. L. W. Wikinski, “Low-density lipoprotein composition and oxidability in atherosclerotic cardiovascular disease,” Clinical Biochemistry, vol. 29, no. 5, pp. 479–487, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. U. Rueckschloss, M. T. Quinn, J. Holtz, and H. Morawietz, “Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 11, pp. 1845–1851, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Pereira, L. F. B. P. Costa Rosa, D. A. Safi, E. J. H. Bechara, and R. Curi, “Control of superoxide dismutase, catalase and glutathione peroxidase activities in rat lymphoid organs by thyroid hormones,” Journal of Endocrinology, vol. 140, no. 1, pp. 73–77, 1994. View at Google Scholar · View at Scopus
  61. M. S. Paller and J. J. Sikora, “Hypothyroidism protects against free radical damage in ischemic acute renal failure,” Kidney International, vol. 29, no. 6, pp. 1162–1166, 1986. View at Google Scholar · View at Scopus
  62. D. Aktuna, W. Buchinger, W. Langsteger et al., “Beta-carotene, vitamin A and carrier proteins in thyroid diseases,” Acta Medica Austriaca, vol. 20, no. 1-2, pp. 17–20, 1993. View at Google Scholar · View at Scopus
  63. P. D. Reaven, E. Ferguson, M. Navab, and F. L. Powell, “Susceptibility of human LDL to oxidative modification: effects of variations in β-carotene concentration and oxygen tension,” Arteriosclerosis and Thrombosis, vol. 14, no. 7, pp. 1162–1169, 1994. View at Google Scholar · View at Scopus
  64. N. Hoogerbrugge, H. Jansen, B. Staels, L. T. Kloet, and J. C. Birkenhäger, “Growth hormone normalizes low-density lipoprotein receptor gene expression in hypothyroid rats,” Metabolism, vol. 45, no. 6, pp. 680–685, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Bonanome, A. Pagnan, S. Biffanti et al., “Effect of dietary monounsaturated and polyunsaturated fatty acids on the susceptibility of plasma low density lipoproteins to oxidative modification,” Arteriosclerosis and Thrombosis, vol. 12, no. 4, pp. 529–533, 1992. View at Google Scholar · View at Scopus
  66. R. B. Jennings and K. A. Reimer, “The cell biology of acute myocardial ischemia,” Annual Review of Medicine, vol. 42, pp. 225–246, 1991. View at Google Scholar · View at Scopus
  67. D. J. Hearse and R. Bolli, “Cutting edge of cardiovascular research. Reperfusion induced injury: manifestations, mechanisms, and clinical relevance,” Cardiovascular Research, vol. 26, no. 2, pp. 101–108, 1992. View at Google Scholar · View at Scopus
  68. N. S. Dhalla, A. B. Elmoselhi, T. Hata, and N. Makino, “Status of myocardial antioxidants in ischemia-reperfusion injury,” Cardiovascular Research, vol. 47, no. 3, pp. 446–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. H. M. Piper, K. Meuter, and C. Schäfer, “Cellular mechanisms of ischemia-reperfusion injury,” Annals of Thoracic Surgery, vol. 75, no. 2, pp. S644–S648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. L. M. Buja, “Myocardial ischemia and reperfusion injury,” Cardiovascular Pathology, vol. 14, no. 4, pp. 170–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. N. S. Dhalla, H. K. Saini, P. S. Tappia, R. Sethi, S. A. Mengi, and S. K. Gupta, “Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease,” Journal of Cardiovascular Medicine, vol. 8, no. 4, pp. 238–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Ferrari, “Metabolic disturbances during myocardial ischemia and reperfusion,” American Journal of Cardiology, vol. 76, no. 6, pp. 17–24, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. J. L. Zweier, J. T. Flaherty, and M. L. Weisfeldt, “Direct measurement of free radical generation following reperfusion of ischemic myocardium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 5, pp. 1404–1407, 1987. View at Google Scholar · View at Scopus
  74. M. W. Irwin, S. Mak, D. L. Mann et al., “Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium,” Circulation, vol. 99, no. 11, pp. 1492–1498, 1999. View at Google Scholar · View at Scopus
  75. P. Venditti, P. Masullo, C. Agnisola, and S. Di Meo, “Effect of vitamin E on the response to ischemia-reperfusion of Langendorff heart preparations from hyperthyroid rats,” Life Sciences, vol. 66, no. 8, pp. 697–708, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Zoratti and I. Szabo, “The mitochondrial permeability transition,” Biochimica et Biophysica Acta, vol. 1241, no. 2, pp. 139–176, 1995. View at Publisher · View at Google Scholar · View at Scopus
  77. E. C. Rothstein, K. L. Byron, R. E. Reed, L. Fliege, and P. A. Lucchesi, “H2O2-induced Ca2+ overload in NRVM involves ERK1/2 MAP kinases: role for an NHE-1-dependent pathway,” American Journal of Physiology, vol. 283, no. 2, pp. H598–H605, 2002. View at Google Scholar · View at Scopus
  78. S. B. Mukherjee, M. Das, G. Sudhandiran, and C. Shaha, “Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes,” The Journal of Biological Chemistry, vol. 277, no. 27, pp. 24717–24727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. M. M. Bersohn, A. K. Morey, and R. S. Weiss, “Sarcolemmal calcium transporters in myocardial ischemia,” Journal of Molecular and Cellular Cardiology, vol. 29, no. 9, pp. 2525–2532, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Kaplan, E. Babusikova, J. Lehotsky, and D. Dobrota, “Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum,” Molecular and Cellular Biochemistry, vol. 248, no. 1-2, pp. 41–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. W. H. Dillmann, “Biochemical basis of thyroid hormone action in the heart,” American Journal of Medicine, vol. 88, no. 6, pp. 626–630, 1990. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Kiss, G. Jakab, E. G. Kranias, and I. Edes, “Thyroid hormone-induced alterations in phospholamban protein expression: regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation,” Circulation Research, vol. 75, no. 2, pp. 245–251, 1994. View at Google Scholar · View at Scopus
  83. G. G. Gick, J. Melikian, and F. Ismail-Beigi, “Thyroidal enhancement of rat myocardial Na,K-ATPase: preferential expression of α2 activity and mRNA abundance,” Journal of Membrane Biology, vol. 115, no. 3, pp. 273–282, 1990. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Ojamaa, A. Sabet, A. Kenessey, R. Shenoy, and I. Klein, “Regulation of rat cardiac Kv1.5 gene expression by thyroid hormone is rapid and chamber specific,” Endocrinology, vol. 140, no. 7, pp. 3170–3176, 1999. View at Google Scholar · View at Scopus
  85. T. D. Reed, G. J. Babu, Y. Ji et al., “The expression of SR calcium transport atpase and the Na+/Ca2+ exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 3, pp. 453–464, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Arai, K. Otsu, D. H. MacLennan, N. R. Alpert, and M. Periasamy, “Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins,” Circulation Research, vol. 69, no. 2, pp. 266–276, 1991. View at Google Scholar · View at Scopus
  87. G. Mintz, R. Pizzarello, and I. Klein, “Enhanced left ventricular diastolic function in hyperthyroidism: noninvasive assessment and response to treatment,” Journal of Clinical Endocrinology and Metabolism, vol. 73, no. 1, pp. 146–150, 1991. View at Google Scholar · View at Scopus
  88. M. A. Pfeffer and E. Braunwald, “Ventricular remodeling after myocardial infarction: experimental observations and clinical implications,” Circulation, vol. 81, no. 4, pp. 1161–1172, 1990. View at Google Scholar · View at Scopus
  89. H. D. White, R. M. Norris, and M. A. Brown, “Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction,” Circulation, vol. 76, no. 1, pp. 44–51, 1987. View at Google Scholar · View at Scopus
  90. M. D. Sternlicht and Z. Werb, “How matrix metalloproteinases regulate cell behavior,” Annual Review of Cell and Developmental Biology, vol. 17, pp. 463–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. D. A. Siwik, P. J. Pagano, and W. S. Colucci, “Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts,” American Journal of Physiology, vol. 280, no. 1, pp. C53–C60, 2001. View at Google Scholar · View at Scopus
  92. D. L. Mann and F. G. Spinale, “Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds,” Circulation, vol. 98, no. 17, pp. 1699–1702, 1998. View at Google Scholar · View at Scopus
  93. C. Pantos, I. Mourouzis, C. Xinaris et al., “Time-dependent changes in the expression of thyroid hormone receptor α1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling,” European Journal of Endocrinology, vol. 156, no. 4, pp. 415–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. V. Rybin and S. F. Steinberg, “Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes,” Circulation Research, vol. 79, no. 3, pp. 388–398, 1996. View at Google Scholar · View at Scopus
  95. K. Kinugawa, K. Yonekura, R. C. J. Ribeiro et al., “Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy,” Circulation Research, vol. 89, no. 7, pp. 591–598, 2001. View at Google Scholar · View at Scopus
  96. C. Pantos, I. Mourouzis, T. Saranteas et al., “Thyroid hormone receptors α1 and β1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion,” Basic Research in Cardiology, vol. 100, no. 5, pp. 422–432, 2005. View at Publisher · View at Google Scholar
  97. S. Danzi, K. Ojamaa, and I. Klein, “Triiodothyronine-mediated myosin heavy chain gene transcription in the heart,” American Journal of Physiology, vol. 284, no. 6, pp. H2255–H2262, 2003. View at Google Scholar · View at Scopus
  98. E. Kiss, A. G. Brittsan, I. Edes, I. L. Grupp, G. Grupp, and E. G. Kranias, “Thyroid hormone-induced alterations in phospholamban-deficient mouse hearts,” Circulation Research, vol. 83, no. 6, pp. 608–613, 1998. View at Google Scholar · View at Scopus
  99. M. Hambleton, H. Hahn, S. T. Pleger et al., “Pharmacological- and gene therapy-based inhibition of protein kinase Cα/β enhances cardiac contractility and attenuates heart failure,” Circulation, vol. 114, no. 6, pp. 574–582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. S. B. Scruggs, L. A. Walker, T. Lyu et al., “Partial replacement of cardiac troponin I with a non-phosphorylatable mutant at serines 43/45 attenuates the contractile dysfunction associated with PKCε phosphorylation,” Journal of Molecular and Cellular Cardiology, vol. 40, no. 4, pp. 465–473, 2006. View at Publisher · View at Google Scholar
  101. J. Narula, N. Haider, R. Virmani et al., “Apoptosis in myocytes in end-stage heart failure,” The New England Journal of Medicine, vol. 335, no. 16, pp. 1182–1189, 1996. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Migliaccio, M. Giogio, S. Mele et al., “The p66(shc) adaptor protein controls oxidative stress response and life span in mammals,” Nature, vol. 402, no. 6759, pp. 309–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Izumiya, S. Kim, Y. Izumi et al., “Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling,” Circulation Research, vol. 93, no. 9, pp. 874–883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Y. Wang, B. Jiao, W. G. Guo, H. L. Che, and Z. B. Yu, “Excessive thyroxine enhances susceptibility to apoptosis and decreases contractility of cardiomyocytes,” Molecular and Cellular Endocrinology, vol. 320, no. 1-2, pp. 67–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. N. M. Scherer and D. W. Deamer, “Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+-ATPase,” Archives of Biochemistry and Biophysics, vol. 246, no. 2, pp. 589–601, 1986. View at Google Scholar
  106. K. Kato, M. Kato, T. Matsuoka, and A. Mustapha, “Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney,” American Journal of Physiology, vol. 254, no. 2, pp. C330–C337, 1988. View at Google Scholar · View at Scopus
  107. B. J. Zimmerman and D. N. Granger, “Mechanisms of reperfusion injury,” American Journal of the Medical Sciences, vol. 307, no. 4, pp. 284–292, 1994. View at Google Scholar · View at Scopus
  108. C. J. Hardy, R. G. Weiss, P. A. Bottomley, and G. Gerstenblith, “Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy,” American Heart Journal, vol. 122, no. 3, pp. 795–801, 1991. View at Publisher · View at Google Scholar · View at Scopus
  109. B. L. Hamman, J. A. Bittl, W. E. Jacobus et al., “Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts,” American Journal of Physiology, vol. 269, no. 3, pp. H1030–H1036, 1995. View at Google Scholar · View at Scopus
  110. P. K. Singal and L. A. Kirshenbaum, “A relative deficit in antioxidant reserve may contribute in cardiac failure,” Canadian Journal of Cardiology, vol. 6, no. 2, pp. 47–49, 1990. View at Google Scholar · View at Scopus
  111. D. L. Packer, G. H. Bardy, and S. J. Worley, “Tachycardia-induced cardiomyopathy: a reversible form of left ventricular dysfunction,” American Journal of Cardiology, vol. 57, no. 8, pp. 563–570, 1986. View at Google Scholar
  112. J. R. Gebhard, C. M. Perry, S. Harkins et al., “Coxsackievirus B3-induced myocarditis: perforin exacerbates disease, but plays no detectable role in virus clearance,” American Journal of Pathology, vol. 153, no. 2, pp. 417–428, 1998. View at Google Scholar · View at Scopus
  113. S. A. Huber, “Coxsackievirus-induced myocarditis is dependent on distinct immunopathogenic responses in different strains of mice,” Laboratory Investigation, vol. 76, no. 5, pp. 691–701, 1997. View at Google Scholar · View at Scopus
  114. V. Kytö, A. Saraste, J. Fohlman et al., “Cardiomyocyte apoptosis after antiviral WIN 54954 treatment in murine coxsackievirus B3 myocarditis,” Scandinavian Cardiovascular Journal, vol. 36, no. 3, pp. 187–192, 2002. View at Google Scholar
  115. A. Henke, H. Launhardt, K. Klement, A. Stelzner, R. Zell, and T. Munder, “Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva,” Journal of Virology, vol. 74, no. 9, pp. 4284–4290, 2000. View at Publisher · View at Google Scholar · View at Scopus
  116. S. A. Huber, “T cells expressing the γδ T cell receptor induce apoptosis in cardiac myocytes,” Cardiovascular Research, vol. 45, no. 3, pp. 579–587, 2000. View at Publisher · View at Google Scholar
  117. A. Saraste, A. Arola, T. Vuorinen et al., “Cardiomyocyte apoptosis in experimental coxsackievirus B3 myocarditis,” Cardiovascular Pathology, vol. 12, no. 5, pp. 255–262, 2003. View at Publisher · View at Google Scholar
  118. M. A. Beck, R. S. Esworthy, Y. S. Ho, and F. F. Chu, “Glutathione peroxidase protects mice from viral-induced myocarditis,” FASEB Journal, vol. 12, no. 12, pp. 1143–1149, 1998. View at Google Scholar · View at Scopus
  119. J. F. Zhou, X. F. Yan, F. Z. Guo, N. Y. Sun, Z. J. Qian, and D. Y. Ding, “Effects of cigarette smoking and smoking cessation on plasma constituents and enzyme activities related to oxidative stress,” Biomedical and Environmental Sciences, vol. 13, no. 1, pp. 44–55, 2000. View at Google Scholar
  120. J. F. Zhou, D. Cai, Y. G. Zhu, J. L. Yang, C. H. Peng, and Y. H. Yu, “A study on relationship of nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic cholecystitis,” World Journal of Gastroenterology, vol. 6, no. 4, pp. 501–507, 2000. View at Google Scholar
  121. R. K. Murray, “Muscle and the cytoskeleton,” in Harper's Biochemistry, R. K. Murray, D. K. Grarmer, P. A. Mayes et al., Eds., pp. 715–736, McGraw-Hill, New York, NY, USA, 25th edition, 2000. View at Google Scholar
  122. M. D. Ginsberg and W. D. Fietrich, Cerebrovascular Diseases, Raven Press, New York, NY, USA, 1st edition, 1989.
  123. L. R. Simson, “Thyrotoxicosis: postmortem diagnosis in an unexpected death,” Journal of Forensic Sciences, vol. 21, no. 4, pp. 831–832, 1976. View at Google Scholar · View at Scopus
  124. R. Polikar, A. G. Burger, U. Scherrer, and P. Nicod, “The thyroid and the heart,” Circulation, vol. 87, no. 5, pp. 1435–1441, 1993. View at Google Scholar · View at Scopus
  125. V. Fatourechi and W. D. Edwards, “Graves' disease and low-output cardiac dysfunction: implications for autoimmune disease in endomyocardial biopsy tissue from eleven patients,” Thyroid, vol. 10, no. 7, pp. 601–605, 2000. View at Google Scholar · View at Scopus
  126. E. D. Nora and N. Flaxman, “The heart in experimental thyrotoxicosis,” The Journal of Laboratory and Clinical Medicine, vol. 28, no. 7, pp. 797–808, 1943. View at Google Scholar · View at Scopus
  127. E. A. Wright, “A case of malignant exophthalmos associated with a fatal myocarditis,” Guy's Hospital Reports, vol. 106, no. 1, pp. 36–46, 1957. View at Google Scholar · View at Scopus
  128. H. Fan, W. Liu, and P. Yan, “Pathological observation and immunohistochemistry study of Type I, III, IV collagen in mitral valve and cardiac interstitium of rheumatic disease,” Zhonghua yi Xue Za Zhi, vol. 76, no. 3, pp. 183–186, 1996. View at Google Scholar · View at Scopus
  129. T. O’ Brien, W. E. Young, P. J. Palumbo et al., “Is the hyperinsulinaemia of insulinoma associated with hypertension and hypertriglyceridemia?” Mayo Clinic Proceedings, vol. 68, pp. 141–146, 1993. View at Google Scholar
  130. R. C. Bahler, D. R. Desser, R. S. Finkelhor, S. J. Brener, and M. Youssefi, “Factors leading to progression of valvular aortic stenosis,” American Journal of Cardiology, vol. 84, no. 9, pp. 1044–1048, 1999. View at Publisher · View at Google Scholar · View at Scopus
  131. Z. Gölbasi, Ö. Uçar, T. Keles et al., “Increased levels of high sensitive C-reactive protein in patients with chronic rheumatic valve disease: evidence of ongoing inflammation,” European Journal of Heart Failure, vol. 4, no. 5, pp. 593–595, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Olsson, J. Thyberg, and J. Nilsson, “Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 5, pp. 1218–1222, 1999. View at Google Scholar
  133. S. Helske, K. A. Lindstedt, M. Laine et al., “Induction of local angiotensin II-producing systems in stenotic aortic valves,” Journal of the American College of Cardiology, vol. 44, no. 9, pp. 1859–1866, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. S. L. Lin, C. P. Liu, L. P. Ger, and H. T. Chiang, “The relation between thickened aortic valve and coronary artery disease,” Zhonghua yi Xue Za Zhi, vol. 60, no. 2, pp. 92–97, 1997. View at Google Scholar · View at Scopus
  135. M. McIntyre, D. F. Bohr, and A. F. Dominiczak, “Endothelial function in hypertension: the role of superoxide anion,” Hypertension, vol. 34, no. 4, pp. 539–545, 1999. View at Google Scholar · View at Scopus
  136. J. L. Cracowski, J. P. Baguet, O. Ormezzano et al., “Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension,” Hypertension, vol. 41, no. 2, pp. 286–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. N. D. Vaziri, Z. Ni, F. Oveisi, and D. L. Trnavsky-Hobbs, “Effect of antioxidant therapy on blood pressure and NO synthase expression in hypertensive rats,” Hypertension, vol. 36, no. 6, pp. 957–964, 2000. View at Google Scholar · View at Scopus
  138. G. Zalba, G. S. José, M. U. Moreno et al., “Oxidative stress in arterial hypertension role of NAD(P)H oxidase,” Hypertension, vol. 38, no. 6, pp. 1395–1399, 2001. View at Google Scholar · View at Scopus
  139. I. Fleming, U. R. Michaelis, D. Bredenkötter et al., “Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries,” Circulation Research, vol. 88, no. 1, pp. 44–51, 2001. View at Google Scholar · View at Scopus
  140. K. V. Kumar and U. N. Das, “Are free radicals involved in the pathobiology of human essential hypertension?” Free Radical Research Communications, vol. 19, no. 1, pp. 59–66, 1993. View at Google Scholar · View at Scopus
  141. J. Pedro-Botet, M. I. Covas, S. Martín, and J. Rubiés-Prat, “Decreased endogenous antioxidant enzymatic status in essential hypertension,” Journal of Human Hypertension, vol. 14, no. 6, pp. 343–345, 2000. View at Google Scholar
  142. F. Lacy, M. T. Kailasam, D. T. O'Connor, G. W. Schmid-Schönbein, and R. J. Parmer, “Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity,” Hypertension, vol. 36, no. 5, pp. 878–884, 2000. View at Google Scholar · View at Scopus
  143. P. Vallance, J. Collier, and S. Moncada, “Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man,” The Lancet, vol. 2, no. 8670, pp. 997–1000, 1989. View at Google Scholar · View at Scopus
  144. P. Ferroni, S. Basili, A. Falco, and G. Davì, “Oxidant stress and platelet activation in hypercholesterolemia,” Antioxidants and Redox Signaling, vol. 6, no. 4, pp. 747–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Vásquez-Vivar, B. Kalyanaraman, P. Martásek et al., “Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9220–9225, 1998. View at Publisher · View at Google Scholar · View at Scopus
  146. U. Landmesser, S. Dikalov, S. R. Price et al., “Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension,” Journal of Clinical Investigation, vol. 111, no. 8, pp. 1201–1209, 2003. View at Publisher · View at Google Scholar
  147. C. R. White, T. A. Brock, L. Y. Chang et al., “Superoxide and peroxynitrite in atherosclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 3, pp. 1044–1048, 1994. View at Google Scholar · View at Scopus
  148. R. M. McAllister, I. Albarracin, E. M. Price, T. K. Smith, J. R. Turk, and K. D. Wyatt, “Thyroid status and nitric oxide in rat arterial vessels,” Journal of Endocrinology, vol. 185, no. 1, pp. 111–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. J. H. Lee, S. Xia, and L. Ragolia, “Upregulation of AT2 receptor and iNOS impairs angiotensin II-induced contraction without endothelium influence in young normotensive diabetic rats,” American Journal of Physiology, vol. 295, no. 1, pp. R144–R154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Scivoletto, Z. B. Fortes, and J. Garcia-Leme, “Thyroid hormones and vascular reactivity: role of the endothelial cell,” European Journal of Pharmacology, vol. 129, no. 3, pp. 271–278, 1986. View at Google Scholar · View at Scopus
  151. P. J. Davis, J. L. Leonard, and F. B. Davis, “Mechanims of nongenomic actions of thyroid hormone,” Frontiers in Neuroendocrinology, vol. 29, pp. 211–218, 2008. View at Google Scholar
  152. J. A. Kuzman, K. A. Vogelsang, T. A. Thomas, and A. M. Gerdes, “L-Thyroxine activates Akt signaling in the heart,” Journal of Molecular and Cellular Cardiology, vol. 39, no. 2, pp. 251–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. G. P. Diniz, M. L. M. Barreto-Chaves, and M. S. Carneiro-Ramos, “Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3β/mTOR signaling pathway,” Basic Research in Cardiology, vol. 104, no. 6, pp. 653–667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. R. M. Touyz, “Reactive oxygen species and angiotensin II signaling in vascular cells—implications in cardiovascular disease,” Brazilian Journal of Medical and Biological Research, vol. 37, no. 8, pp. 1263–1273, 2004. View at Google Scholar · View at Scopus
  155. E. L. Schiffrin, “Beyond blood pressure: the endothelium and atherosclerosis progression,” American Journal of Hypertension, vol. 15, no. 10, pp. S115–S122, 2002. View at Google Scholar · View at Scopus
  156. R. M. Touyz, X. Chen, F. Tabet et al., “Expression of a gp91phox-containing leukocyte- type NADPH oxidase in human vascular smooth muscle cells: modulation by Ang II,” Circulation Research, vol. 90, pp. 1205–1213, 2002. View at Google Scholar
  157. R. Napoli, B. Biondi, V. Guardasole et al., “Impact of hyperthyroidism and its correction on vascular reactivity in humans,” Circulation, vol. 104, no. 25, pp. 3076–3080, 2001. View at Google Scholar · View at Scopus
  158. T. Ichiki, M. Usui, M. Kato et al., “Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide,” Hypertension, vol. 31, no. 1, pp. 342–348, 1998. View at Google Scholar · View at Scopus
  159. J. H. Laragh and J. E. Sealey, “Relevance of the plasma renin hormonal control system that regulates blood pressure and sodium balance for correctly treating hypertension and for evaluating ALLHAT,” American Journal of Hypertension, vol. 16, no. 5, pp. 407–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Danzi and I. Klein, “Thyroid hormone and the cardiovascular system,” Minerva Endocrinologica, vol. 29, no. 3, pp. 139–150, 2004. View at Google Scholar · View at Scopus
  161. J. A. Lewicki and A. A. Protter, “Physiological studies of the natriuretic peptide family,” in Hypertension: Pathophysiology, Diagnosis and Management, J. H. Laragh and B. M. Brenner, Eds., pp. 1029–1053, 1995. View at Google Scholar
  162. W. Rokicki, A. Strzałkowski, B. Kłapcińska, A. Danch, and A. Sobczak, “Antioxidant status in newborns and infants suffering from congenital heart defects,” Wiadomosci Lekarskie (Warsaw, Poland: 1960), vol. 56, no. 7-8, pp. 337–340, 2003. View at Google Scholar
  163. C. R. Ferreiro, A. C. P. Chagas, M. H. C. Carvalho et al., “Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptive mechanism,” Circulation, vol. 103, no. 18, pp. 2272–2276, 2001. View at Google Scholar · View at Scopus
  164. N. Linder, B. Sela, and B. German, “Evaluation of the oxidative state in children with congenital heart disease,” Archives of Disease in Childhood, vol. 77, pp. F239–F240, 1997. View at Google Scholar
  165. S. A. Thorne, I. Barnes, P. Cullinan, and J. Somerville, “Amiodarone-associated thyroid dysfunction: risk factors in adults with congenital heart disease,” Circulation, vol. 100, no. 2, pp. 149–154, 1999. View at Google Scholar · View at Scopus
  166. P. Dandona, H. Ghanim, and D. P. Brooks, “Antioxidant activity of carvedilol in cardiovascular disease,” Journal of Hypertension, vol. 25, no. 4, pp. 731–741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. E. A. Rosei and D. Rizzoni, “Metabolic profile of nebivolol, a β-adrenoceptor antagonist with unique characteristics,” Drugs, vol. 67, no. 8, pp. 1097–1107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. U. Mühlhäuser, O. Zolk, T. Rau, F. Münzel, T. Wieland, and T. Eschenhagen, “Atorvastatin desensitizes β-adrenergic signaling in cardiac myocytes via reduced isoprenylation of G-protein γ-subunits,” FASEB Journal, vol. 20, no. 6, pp. 785–787, 2006. View at Publisher · View at Google Scholar
  169. J. Kjekshus, E. Apetrei, V. Barrios et al., “Rosuvastatin in older patients with systolic heart failure,” The New England Journal of Medicine, vol. 357, no. 22, pp. 2248–2261, 2007. View at Publisher · View at Google Scholar
  170. A. L. Taylor, S. Ziesche, C. Yancy et al., “Combination of isosorbide dinitrate and hydralazine in blacks with heart failure,” The New England Journal of Medicine, vol. 351, no. 20, pp. 2049–2057, 2004. View at Publisher · View at Google Scholar
  171. A. Daiber, M. Oelze, M. Coldewey et al., “Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with congestive heart failure,” Biochemical and Biophysical Research Communications, vol. 338, no. 4, pp. 1865–1874, 2005. View at Publisher · View at Google Scholar
  172. J. M. Hare, B. Mangal, J. Brown et al., “Impact of Oxypurinol in Patients With Symptomatic Heart Failure. Results of the OPT-CHF Study,” Journal of the American College of Cardiology, vol. 51, no. 24, pp. 2301–2309, 2008. View at Publisher · View at Google Scholar
  173. R. Nakamura, K. Egashira, Y. Machida et al., “Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation,” Circulation, vol. 106, no. 3, pp. 362–367, 2002. View at Publisher · View at Google Scholar · View at Scopus
  174. Y. Higashi, D. Jitsuiki, K. Chayama, and M. Yoshizumi, “Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases,” Recent Patents on Cardiovascular Drug Discovery, vol. 1, no. 1, pp. 85–93, 2006. View at Publisher · View at Google Scholar
  175. F. Cipollone, M. Fazia, A. Iezzi et al., “Blockade of the angiotensin II type 1 receptor stabilizes atherosclerotic plaques in humans by inhibiting prostaglandin E2-dependent matrix metalloproteinase activity,” Circulation, vol. 109, no. 12, pp. 1482–1488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. H. F. Galley, J. Thornton, P. D. Howdle, B. E. Walker, and N. R. Webster, “Combination oral antioxidant supplementation reduces blood pressure,” Clinical Science, vol. 92, no. 4, pp. 361–365, 1997. View at Google Scholar · View at Scopus
  177. S. Chattopadhyay, G. Zaidi, K. Das, and G. B. N. Chainy, “Effects of hypothyroidism induced by 6-n-propylthiouracil and its reversal by T3 on rat heart superoxide dismutase, catalase and lipid peroxidation,” Indian Journal of Experimental Biology, vol. 41, no. 8, pp. 846–849, 2003. View at Google Scholar · View at Scopus