Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 756357, 15 pages
http://dx.doi.org/10.1100/2012/756357
Review Article

A Review: Inflammatory Process in Alzheimer's Disease, Role of Cytokines

Department of Food and Nutrition Technology, St. Anthony Catholic University, Campus de Los Jerónimos, s/n Guadalupe, 30107 Murcia, Spain

Received 31 October 2011; Accepted 11 December 2011

Academic Editor: Toshio Kawamata

Copyright © 2012 Jose Miguel Rubio-Perez and Juana Maria Morillas-Ruiz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Alzheimer A, “Uber eine eigenartige Erkangkung der Hirnrinde (An unusual illness of the cerebral cortex),” Allgemeine Zeitschr Psychisch-Gerichtliche Medizin, vol. 64, pp. 146–148, 1907. View at Google Scholar
  2. L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A. Evans, “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Archives of Neurology, vol. 60, no. 8, pp. 1119–1122, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. A. Wimo, L. Jonsson, and B. Winblad, “An estimate of the worldwide prevalence and direct costs of dementia in 2003,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 3, pp. 175–181, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. C. L. Joachim and D. J. Selkoe, “The seminal role of β-amyloid in the pathogenesis of Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 6, no. 1, pp. 7–34, 1992. View at Google Scholar · View at Scopus
  5. J. Löffler and G. Huber, “β-Amyloid precursor protein isoforms in various rat brain regions and during brain development,” Journal of Neurochemistry, vol. 59, no. 4, pp. 1316–1324, 1992. View at Google Scholar · View at Scopus
  6. D. J. Selkoe, M. B. Podlisny, C. L. Joachim et al., “β-Amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 19, pp. 7341–7345, 1988. View at Google Scholar · View at Scopus
  7. D. I. Graham, S. M. Gentleman, J. A. R. Nicoll et al., “Altered beta-APP metabolism after head injury and its relationship to the aetiology of Alzheimer's disease,” in Mechanisms of Secondary Brain Damage in Cerebral Ischemia and Trauma, A. Baethmann, O. Kempski, N. Plesnila, and F. Staub, Eds., pp. 96–102, Springer, Vienna, Austria, 1996. View at Google Scholar
  8. S. M. Gentleman, M. J. Nash, C. J. Sweeting, D. I. Graham, and G. W. Roberts, “β-Amyloid precursor protein (βAPP) as a marker for axonal injury after head injury,” Neuroscience Letters, vol. 160, no. 2, pp. 139–144, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. J. G. Sheng, F. A. Boop, R. E. Mrak, and W. S. T. Griffin, “Increased neuronal β-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1α immunoreactivity,” Journal of Neurochemistry, vol. 63, no. 5, pp. 1872–1879, 1994. View at Google Scholar · View at Scopus
  10. H. Braak, E. Braak, and M. Strothjohann, “Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat,” Neuroscience Letters, vol. 171, no. 1-2, pp. 1–4, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. W. S. T. Griffin, L. C. Stanley, C. Ling et al., “Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 19, pp. 7611–7615, 1989. View at Google Scholar · View at Scopus
  12. P. L. McGeer, S. Itagaki, H. Tago, and E. G. McGeer, “Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR,” Neuroscience Letters, vol. 79, no. 1-2, pp. 195–200, 1987. View at Google Scholar · View at Scopus
  13. E. E. Tuppo and H. R. Arias, “The role of inflammation in Alzheimer's disease,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 2, pp. 289–305, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. H. Akiyama, S. Barger, S. Barnum et al., “Inflammation and Alzheimer's disease,” Neurobiology of Aging, vol. 21, no. 3, pp. 383–421, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Rogers, J. Luber-Narod, S. D. Styren, and W. H. Civin, “Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease,” Neurobiology of Aging, vol. 9, no. 4, pp. 339–349, 1988. View at Google Scholar · View at Scopus
  16. M. T. Heneka and M. K. O'Banion, “Inflammatory processes in Alzheimer's disease,” Journal of Neuroimmunology, vol. 184, no. 1-2, pp. 69–91, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. Wyss-Coray, “Inflammation in Alzheimer disease: driving force, bystander or beneficial response?” Nature Medicine, vol. 12, no. 9, pp. 1005–1015, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. W. S. T. Griffin, J. G. Sheng, M. C. Royston et al., “Glial-neuronal interactions in Alzheimer's disease: the potential role of a ‘cytokine cycle’ in disease progression,” Brain Pathology, vol. 8, no. 1, pp. 65–72, 1998. View at Google Scholar · View at Scopus
  19. R. Mitchell and R. Cotran, “Acute and chronic inflammation,” in Robbins Basic Pathology, V. Kumar, R. Cotran, and S. Robbins, Eds., Saunders, Philadelphia, Pa, USA, 2003. View at Google Scholar
  20. W. S. T. Griffin and R. E. Mrak, “Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer's disease,” Journal of Leukocyte Biology, vol. 72, no. 2, pp. 233–238, 2002. View at Google Scholar · View at Scopus
  21. M. Cacquevel, N. Lebeurrier, S. Chéenne, and D. Vivien, “Cytokines in neuroinflammation and Alzheimer's disease,” Current Drug Targets, vol. 5, no. 6, pp. 529–534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. R. E. Mrak and W. S. T. Griffin, “Glia and their cytokines in progression of neurodegeneration,” Neurobiology of Aging, vol. 26, no. 3, pp. 349–354, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. C. E. Finch and T. E. Morgan, “Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper,” Current Alzheimer Research, vol. 4, no. 2, pp. 185–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. R. E. Mrak, J. G. Sheng, and W. S. T. Griffin, “Glial cytokines in Alzheimer's disease: review and pathogenic implications,” Human Pathology, vol. 26, no. 8, pp. 816–823, 1995. View at Google Scholar · View at Scopus
  25. T. Town, V. Nikolic, and J. Tan, “The microglial “activation” continuum: from innate to adaptive responses,” Journal of Neuroinflammation, vol. 2, article 24, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. D. W. Dickson, J. Farlo, P. Davies, H. Crystal, P. Fuld, and S. H. C. Yen, “Alzheimer's disease. A double-labeling immunohistochemical study of senile plaques,” American Journal of Pathology, vol. 132, no. 1, pp. 86–101, 1988. View at Google Scholar · View at Scopus
  27. R. L. Nussbaum and C. E. Ellis, “Alzheimer's disease and Parkinson's disease,” The New England Journal of Medicine, vol. 348, no. 14, pp. 1356–1364, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. A. Findeis, “The role of amyloid β peptide 42 in Alzheimer's disease,” Pharmacology and Therapeutics, vol. 116, no. 2, pp. 266–286, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. G. Halliday, S. R. Robinson, C. Shepherd, and J. Kril, “Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 1-2, pp. 1–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. R. D. Bo, N. Angeretti, E. Lucca, M. G. De Simoni, and G. Forloni, “Reciprocal control of inflammatory cytokines, IL-1 and IL-6, β-amyloid production in cultures,” Neuroscience Letters, vol. 188, no. 1, pp. 70–74, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. G. E. Ringheim, A. M. Szczepanik, W. Petko, K. L. Burgher, S. Z. Zhu, and C. C. Chao, “Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex,” Molecular Brain Research, vol. 55, no. 1, pp. 35–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Fassbender, C. Masters, and K. Beyreuther, “Alzheimer's disease: an inflammatory disease?” Neurobiology of Aging, vol. 21, no. 3, pp. 433–436, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Misonou, M. Morishima-Kawashima, and Y. Ihara, “Oxidative stress induces intracellular accumulation of amyloid β- protein (Aβ) in human neuroblastoma cells,” Biochemistry, vol. 39, no. 23, pp. 6951–6959, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. R. M. Friedlander, “Apoptosis and caspases in neurodegenerative diseases,” The New England Journal of Medicine, vol. 348, no. 14, pp. 1365–1375, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. C. S. Atwood, M. E. Obrenovich, T. Liu et al., “Amyloid-β: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-β,” Brain Research Reviews, vol. 43, no. 1, pp. 1–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Lindberg, E. Hjorth, C. Post, B. Winblad, and M. Schultzberg, “Cytokine production by a human microglial cell line: effects of βamyloid and α-melanocyte-stimulating hormone,” Neurotoxicity Research, vol. 8, no. 3-4, pp. 267–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. S. Aisen, “Inflammation and Alzheimer's disease: mechanisms and therapeutic strategies,” Gerontology, vol. 43, no. 1-2, pp. 143–149, 1997. View at Google Scholar · View at Scopus
  38. L. S. Perlmutter, E. Barron, and H. C. Chui, “Morphologic association between microglia and senile plaque amyloid in Alzheimer's disease,” Neuroscience Letters, vol. 119, no. 1, pp. 32–36, 1990. View at Publisher · View at Google Scholar · View at Scopus
  39. P. L. McGeer, T. Kawamata, D. G. Walker, H. Akiyama, I. Tooyama, and E. G. McGeer, “Microglia in degenerative neurological disease,” Glia, vol. 7, no. 1, pp. 84–92, 1993. View at Google Scholar · View at Scopus
  40. N. Abbas, I. Bednar, E. Mix et al., “Up-regulation of the inflammatory cytokines IFN-γ and IL-12 and down-regulation of IL-4 in cerebral cortex regions of APPSWE transgenic mice,” Journal of Neuroimmunology, vol. 126, no. 1-2, pp. 50–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Bezzi, M. Domercq, L. Brambilla et al., “CXCR4-activated astrocyte glutamate release via TNFa: amplification by microglia triggers neurotoxicity,” Nature Neuroscience, vol. 4, no. 7, pp. 702–710, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. G. C. Brown and A. Bal-Price, “Inflammatory Neurodegeneration Mediated by Nitric Oxide, Glutamate, and Mitochondria,” Molecular Neurobiology, vol. 27, no. 3, pp. 325–355, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. L. Fetler and S. Amigorena, “Brain under surveillance: the microglia patrol,” Science, vol. 309, no. 5733, pp. 392–393, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. R. D'Andrea, G. M. Cole, and M. D. Ard, “The microglial phagocytic role with specific plaque types in the Alzheimer disease brain,” Neurobiology of Aging, vol. 25, no. 5, pp. 675–683, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. W. Dickson, S. C. Lee, L. A. Mattiace, S. H. Yen, and C. Brosnan, “Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease,” Glia, vol. 7, no. 1, pp. 75–83, 1993. View at Google Scholar · View at Scopus
  46. S. W. Barger and A. D. Harmon, “Microglial activation by alzhelmer amyloid precursor protein and modulation by apolipoprotein E,” Nature, vol. 388, no. 6645, pp. 878–881, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. L. A. DeGiorgio, Y. Shimizu, H. S. Chun et al., “Amyloid precursor protein gene disruption attenuates degeneration of substantia nigra compacta neurons following axotomy,” Brain Research, vol. 938, no. 1-2, pp. 38–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Permanne, C. Adessi, G. P. Saborio et al., “Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide,” The FASEB Journal, vol. 16, no. 8, pp. 860–862, 2002. View at Google Scholar · View at Scopus
  49. C. K. Combs, J. Colleen Karlo, S. C. Kao, and G. E. Landreth, “β-amyloid stimulation of microglia anti monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis,” Journal of Neuroscience, vol. 21, no. 4, pp. 1179–1188, 2001. View at Google Scholar · View at Scopus
  50. G. J. Ho, R. Drego, E. Hakimian, and E. Masliah, “Mechanisms of cell signaling and inflammation in Alzheimer's disease,” Current Drug Targets: Inflammation and Allergy, vol. 4, no. 2, pp. 247–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. S. A. Frautschy, F. Yang, M. Irrizarry et al., “Microglial response to amyloid plaques in APPsw transgenic mice,” American Journal of Pathology, vol. 152, no. 1, pp. 307–317, 1998. View at Google Scholar · View at Scopus
  52. W. Q. Qiu, D. M. Walsh, Z. Ye et al., “Insulin-degrading enzyme regulates extracellular levels of amyloid β- protein by degradation,” The Journal of Biological Chemistry, vol. 273, no. 49, pp. 32730–32738, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Liu and J. S. Hong, “Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention,” Journal of Pharmacology and Experimental Therapeutics, vol. 304, no. 1, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. S. Gelinas, K. DaSilva, D. Fenili, P. St. George, and J. McLaurin, “Immunotherapy for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 2, pp. 14657–14662, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. C. Holmes, D. Boche, D. Wilkinson et al., “Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial,” The Lancet, vol. 372, no. 9634, pp. 216–223, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. D. Frenkel, R. Maron, D. S. Burt, and H. L. Weiner, “Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease,” Journal of Clinical Investigation, vol. 115, no. 9, pp. 2423–2433, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. Roßner, C. Lange-Dohna, U. Zeitschel, and J. R. Perez-Polo, “Alzheimer's disease β-secretase BACE1 is not a neuron-specific enzyme,” Journal of Neurochemistry, vol. 92, no. 2, pp. 226–234, 2005. View at Publisher · View at Google Scholar · View at PubMed
  58. P. L. McGeer and E. G. McGeer, “The possible role of complement activation in Alzheimer disease,” Trends in Molecular Medicine, vol. 8, no. 11, pp. 519–523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Shen and S. Meri, “Yin and Yang: complement activation and regulation in Alzheimer's disease,” Progress in Neurobiology, vol. 70, no. 6, pp. 463–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. S. S. Bohlson, D. A. Fraser, and A. J. Tenner, “Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions,” Molecular Immunology, vol. 44, no. 1–3, pp. 33–43, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. J. Kohl, “The role of complement in danger sensing and transmission,” Immunologic Research, vol. 34, no. 2, pp. 157–176, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. P. Gasque, “Complement: a unique innate immune sensor for danger signals,” Molecular Immunology, vol. 41, no. 11, pp. 1089–1098, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. S. R. Barnum, “Complement biosynthesis in the central nervous system,” Critical Reviews in Oral Biology and Medicine, vol. 6, no. 2, pp. 132–146, 1995. View at Google Scholar · View at Scopus
  64. P. Gasque, M. Fontaine, and B. P. Morgan, “Complement expression in human brain: biosynthesis of terminal pathway components and regulators in human glial cells and cell lines,” Journal of Immunology, vol. 154, no. 9, pp. 4726–4733, 1995. View at Google Scholar · View at Scopus
  65. B. P. Morgan and P. Gasque, “Expression of complement in the brain: role in health and disease,” Immunology Today, vol. 17, no. 10, pp. 461–466, 1996. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Nataf, P. F. Stahel, N. Davoust, and S. R. Barnum, “Complement anaphylatoxin receptors on neurons: new tricks for old receptors?” Trends in Neurosciences, vol. 22, no. 9, pp. 397–402, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. D. M. Bonifati and U. Kishore, “Role of complement in neurodegeneration and neuroinflammation,” Molecular Immunology, vol. 44, no. 5, pp. 999–1010, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. S. A. O'Barr, J. Caguioa, D. Gruol et al., “Neuronal expression of a functional receptor for the C5a complement activation fragment,” Journal of Immunology, vol. 166, no. 6, pp. 4154–4162, 2001. View at Google Scholar · View at Scopus
  69. M. Bénard, E. Raoult, D. Vaudry et al., “Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum,” Molecular Immunology, vol. 45, no. 14, pp. 3767–3774, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. M. R. Emmerling, M. D. Watson, C. A. Raby, and K. Spiegel, “The role of complement in Alzheimer's disease pathology,” Biochimica et Biophysica Acta, vol. 1502, no. 1, pp. 158–171, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. A. J. Tenner, “Complement in Alzheimer's disease: opportunities for modulating protective and pathogenic events,” Neurobiology of Aging, vol. 22, no. 6, pp. 849–861, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Rogers, N. R. Cooper, S. Webster et al., “Complement activation by β-amyloid in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 21, pp. 10016–10020, 1992. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Afagh, B. J. Cummings, D. H. Cribbs, C. W. Cotman, and A. J. Tenner, “Localization and cell association of C1q in Alzheimer's disease brain,” Experimental Neurology, vol. 138, no. 1, pp. 22–32, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. P. Mukherjee and G. M. Pasinetti, “The role of complement anaphylatoxin C5a in neurodegeneration: implications in Alzheimer's disease,” Journal of Neuroimmunology, vol. 105, no. 2, pp. 124–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Maier, Y. Peng, L. Jiang, T. J. Seabrook, M. C. Carroll, and C. A. Lemere, “Complement C3 deficiency leads to accelerated amyloid β plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice,” Journal of Neuroscience, vol. 28, no. 25, pp. 6333–6341, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. T. Wyss-Coray, F. Yan, A. H. T. Lin et al., “Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10837–10842, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. A. D. Luster, “Mechanisms of disease: Chemokines—Chemotactic cytokines that mediate inflammation,” The New England Journal of Medicine, vol. 338, no. 7, pp. 436–445, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Owens, A. A. Babcock, J. M. Millward, and H. Toft-Hansen, “Cytokine and chemokine inter-regulation in the inflamed or injured CNS,” Brain Research Reviews, vol. 48, no. 2, pp. 178–184, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. J. Hesselgesser and R. Horuk, “Chemokine and chemokine receptor expression in the central nervous system,” Journal of NeuroVirology, vol. 5, no. 1, pp. 13–26, 1999. View at Google Scholar · View at Scopus
  80. A. R. Glabinski and R. M. Ransohoff, “Chemokines and chemokine receptors in CNS pathology,” Journal of NeuroVirology, vol. 5, no. 1, pp. 3–12, 1999. View at Google Scholar · View at Scopus
  81. M. Xia and B. T. Hyman, “Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease,” Journal of NeuroVirology, vol. 5, no. 1, pp. 32–41, 1999. View at Google Scholar · View at Scopus
  82. S. Davis and S. Laroche, “What can rodent models tell us about cognitive decline in Alzheimer's disease?” Molecular Neurobiology, vol. 27, no. 3, pp. 249–276, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. V. A. Pavlov and K. J. Tracey, “The cholinergic anti-inflammatory pathway,” Brain, Behavior, and Immunity, vol. 19, no. 6, pp. 493–499, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. C. Natarajan and J. J. Bright, “Peroxisome proliferator-activated receptor-gamma agonist inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation,” Genes and Immunity, vol. 3, no. 2, pp. 59–70, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. G. I. Botchkina, M. E. Meistrell, I. L. Botchkina, and K. J. Tracey, “Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia,” Molecular Medicine, vol. 3, no. 11, pp. 765–781, 1997. View at Google Scholar · View at Scopus
  86. C. D. Breder, M. Tsujimoto, Y. Terano, D. W. Scott, and C. B. Saper, “Distribution and characterization of tumor necrosis factor-α-like immunoreactivity in the murine central nervous system,” Journal of Comparative Neurology, vol. 337, no. 4, pp. 543–567, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. C. Gong, Z. Qin, A. L. Betz, X. H. Liu, and G. Y. Yang, “Cellular localization of tumor necrosis factor alpha following focal cerebral ischemia in mice,” Brain Research, vol. 801, no. 1-2, pp. 1–8, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. P. G. Murphy, L. S. Borthwick, R. S. Johnston, G. Kuchel, and P. M. Richardson, “Nature of the retrograde signal from injured nerves that induces interleukin-6 mRNA in neurons,” Journal of Neuroscience, vol. 19, no. 10, pp. 3791–3800, 1999. View at Google Scholar · View at Scopus
  89. O. Orzyłowska, B. Oderfeld-Nowak, M. Zaremba, S. Januszewski, and M. Mossakowski, “Prolonged and concomitant induction of astroglial immunoreactivity of interleukin-1beta and interleukin-6 in the rat hippocampus after transient global ischemia,” Neuroscience Letters, vol. 263, no. 1, pp. 72–76, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Suzuki, K. Tanaka, E. Nagata, D. Ito, T. Dembo, and Y. Fukuuchi, “Cerebral neurons express interleukin-6 after transient forebrain ischemia in gerbils,” Neuroscience Letters, vol. 262, no. 2, pp. 117–120, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. J. L. Tchelingerian, L. Vignais, and C. Jacque, “TNFα gene expression is induced in neurones after a hippocampal lesion,” NeuroReport, vol. 5, no. 5, pp. 585–588, 1994. View at Google Scholar · View at Scopus
  92. S. D. Yan, S. F. Yan, X. Chen et al., “Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide,” Nature Medicine, vol. 1, no. 7, pp. 693–699, 1995. View at Google Scholar · View at Scopus
  93. A. Yermakova and M. K. O'Banion, “Cyclooxygenases in the central nervous system: implications for treatment of neurological disorders,” Current Pharmaceutical Design, vol. 6, no. 17, pp. 1755–1776, 2000. View at Google Scholar · View at Scopus
  94. S. D. Yan, H. Zhu, J. Fu et al., “Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5296–5301, 1997. View at Publisher · View at Google Scholar · View at Scopus
  95. M. T. Heneka, H. Wiesinger, L. Dumitrescu-Ozimek, P. Riederer, D. L. Feinstein, and T. Klockgether, “Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 9, pp. 906–916, 2001. View at Google Scholar · View at Scopus
  96. Y. Vodovotz, M. S. Lucia, K. C. Flanders et al., “Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease,” Journal of Experimental Medicine, vol. 184, no. 4, pp. 1425–1433, 1996. View at Publisher · View at Google Scholar · View at Scopus
  97. S. C. Lee, M. L. Zhao, A. Hirano, and D. W. Dickson, “Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 11, pp. 1163–1169, 1999. View at Google Scholar · View at Scopus
  98. M. A. Smith, P. L. Richey Harris, L. M. Sayre, J. S. Beckman, and G. Perry, “Widespread peroxynitrite-mediated damage in Alzheimer's disease,” Journal of Neuroscience, vol. 17, no. 8, pp. 2653–2657, 1997. View at Google Scholar · View at Scopus
  99. K. M. Boje and P. K. Arora, “Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death,” Brain Research, vol. 587, no. 2, pp. 250–256, 1992. View at Publisher · View at Google Scholar · View at Scopus
  100. M. T. Heneka, P. A. Löschmann, M. Gleichmann et al., “Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor- α/lipopolysaccharide,” Journal of Neurochemistry, vol. 71, no. 1, pp. 88–94, 1998. View at Google Scholar
  101. L. Steinman, “A brief history of TH17, the first major revision in the T H1/TH2 hypothesis of T cell-mediated tissue damage,” Nature Medicine, vol. 13, no. 2, pp. 139–145, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. A. Meager, “Cytokines: interleukins,” in Encyclopedia of Molecular Cell Biology and Molecular Medicine, R. Meyers, Ed., pp. 115–151, Wiley-VCH, Weinheim, Germany, 2004. View at Google Scholar
  103. A. Meager, “Viral inhibitors and immune response mediators: the interferons,” in Encyclopedia of Molecular Cell Biology and Molecular Medicine, R. Meyers, Ed., pp. 387–421, Wiley-VCH, Weinheim, Germany, 2005. View at Google Scholar
  104. D. Walker, E. McGeer, and P. McGeer, “Involvement of inflammation and complement in Alzheimer's disease,” in Clinical Neuroimmunology, J. Antel, G. Birnbaum, and H. Härtung, Eds., pp. 172–188, Blackwell Scientific, Oxford, UK, 1997. View at Google Scholar
  105. E. McGeer and P. McGeer, “Inflammatory cytokines in the CNS,” CNS Drugs, vol. 7, pp. 214–287, 1997. View at Google Scholar
  106. G. Forloni, F. Mangiarotti, N. Angeretti, E. Lucca, and M. G. De Simoni, “β-amyloid fragment potentiates IL-6 and TNF-α secretion by LPS in astrocytes but not in microglia,” Cytokine, vol. 9, no. 10, pp. 759–762, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. D. Boraschi, P. Bossu, P. Ruggiero et al., “Mapping of receptor binding sites on IL-1β by reconstruction of IL-1ra- like domains,” Journal of Immunology, vol. 155, no. 10, pp. 4719–4725, 1995. View at Google Scholar · View at Scopus
  108. C. D. Winter, F. Iannotti, A. K. Pringle, C. Trikkas, G. F. Clough, and M. K. Church, “A microdialysis method for the recovery of IL-1β, IL-6 and nerve growth factor from human brain in vivo,” Journal of Neuroscience Methods, vol. 119, no. 1, pp. 45–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. M. N. Woodroofe, G. S. Sarna, M. Wadhwa et al., “Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production,” Journal of Neuroimmunology, vol. 33, no. 3, pp. 227–236, 1991. View at Publisher · View at Google Scholar · View at Scopus
  110. F. Rossi and E. Bianchini, “Synergistic induction of nitric oxide by beta-amyloid and cytokines in astrocytes,” Biochemical and Biophysical Research Communications, vol. 225, pp. 474–478, 1996. View at Google Scholar
  111. R. E. Mrak and W. S. T. Griffin, “Interleukin-1, neuroinflammation, and Alzheimer's disease,” Neurobiology of Aging, vol. 22, no. 6, pp. 903–908, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Hammacher, L. D. Ward, J. Weinstock, H. Treutlein, K. Yasukawa, and R. J. Simpson, “Structure-function analysis of human IL-6: identification of two distinct regions that are important for receptor binding,” Protein Science, vol. 3, no. 12, pp. 2280–2293, 1994. View at Google Scholar · View at Scopus
  113. G. Raivich, M. Bohatschek, C. U. A. Kloss, A. Werner, L. L. Jones, and G. W. Kreutzberg, “Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function,” Brain Research Reviews, vol. 30, no. 1, pp. 77–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  114. S. J. Hopkins and N. J. Rothwell, “Cytokines and the nervous system I: expression and recognition,” Trends in Neurosciences, vol. 18, no. 2, pp. 83–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  115. E. N. Benveniste, “Cytokine actions in the central nervous system,” Cytokine and Growth Factor Reviews, vol. 9, no. 3-4, pp. 259–275, 1998. View at Publisher · View at Google Scholar · View at Scopus
  116. K. W. Selmaj, M. Farooq, W. T. Norton, C. S. Raine, and C. F. Brosnan, “Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor,” Journal of Immunology, vol. 144, no. 1, pp. 129–135, 1990. View at Google Scholar · View at Scopus
  117. C. J. Heyser, E. Masliah, A. Samimi, I. L. Campbell, and L. H. Gold, “Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 4, pp. 1500–1505, 1997. View at Publisher · View at Google Scholar · View at Scopus
  118. J. V. Castell, T. Andus, D. Kunz, and P. C. Heinrich, “Interleukin-6: the major regulator of acute-phase protein synthesis in man and rat,” Annals of the New York Academy of Sciences, vol. 557, pp. 87–99, 1989, discussion pp. 100-101. View at Google Scholar · View at Scopus
  119. R. T. Perry, J. S. Collins, H. Wiener, R. Acton, and R. C. P. Go, “The role of TNF and its receptors in Alzheimer's disease,” Neurobiology of Aging, vol. 22, no. 6, pp. 873–883, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. I. Blasko, F. Marx, E. Steiner, T. Hartmann, and B. Grubeck-Loebenstein, “TNFα plus IFNγ induce the production of alzheimer β-amyloid peptides and decrease the secretion of APPs,” FASEB Journal, vol. 13, no. 1, pp. 63–68, 1999. View at Google Scholar
  121. P. Eikelenboom, S. S. Zhan, W. A. Van Gool, and D. Allsop, “Inflammatory mechanisms in Alzheimer's disease,” Trends in Pharmacological Sciences, vol. 15, no. 12, pp. 447–450, 1994. View at Publisher · View at Google Scholar · View at Scopus
  122. P. L. McGeer and E. G. McGeer, “The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases,” Brain Research Reviews, vol. 21, no. 2, pp. 195–218, 1995. View at Publisher · View at Google Scholar · View at Scopus
  123. P. Eikelenboom and W. A. Van Gool, “Neuroinflammatory perspectives on the two faces of Al'zheimer's disease,” Journal of Neural Transmission, vol. 111, no. 3, pp. 281–294, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. Y. Chong, “Effect of a carboxy-terminal fragment of the Alzheimer's amyloid precursor protein on expression of proinflammatory cytokines in rat glial cells,” Life Sciences, vol. 61, no. 23, pp. 2323–2333, 1997. View at Publisher · View at Google Scholar · View at Scopus
  125. C. R. Plata-Salamán, S. E. Ilyin, and D. Gayle, “Brain cytokine mRNAs in anorectic rats bearing prostate adenocarcinoma tumor cells,” American Journal of Physiology, vol. 275, no. 2, pp. R566–R573, 1998. View at Google Scholar · View at Scopus
  126. C. A Dinarello, “Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist,” International Reviews of Immunology, vol. 16, pp. 457–499, 1998. View at Google Scholar
  127. C. A. Dinarello, “Biologic basis for interleukin-1 in disease,” Blood, vol. 87, no. 6, pp. 2095–2147, 1996. View at Google Scholar · View at Scopus
  128. C. A. Dinarello, “Induction of interleukin-1 and interleukin-1 receptor antagonist,” Seminars in Oncology, vol. 24, pp. S9-81–S9-93, 1997. View at Google Scholar
  129. J. E. Sims, M. A. Gayle, J. L. Slack et al., “Interleukin 1 signaling occurs exclusively via the type I receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6155–6159, 1993. View at Google Scholar · View at Scopus
  130. D. B. Carter, M. R. Deibel, C. J. Dunn et al., “Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein,” Nature, vol. 344, no. 6267, pp. 633–638, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. J. Lundkvist, A. K. Sundgren-Andersson, S. Tingsborg et al., “Acute-phase responses in transgenic mice with CNS overexpression of IL-1 receptor antagonist,” American Journal of Physiology, vol. 276, pp. R644–R651, 1999. View at Google Scholar
  132. J. Liu, M. L. Zhao, C. F. Brosnan, and S. C. Lee, “Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL-1beta and IL-1 receptor antagonist,” Journal of Immunology, vol. 157, no. 8, pp. 3569–3576, 1996. View at Google Scholar · View at Scopus
  133. P. Thornton, E. Pinteaux, R. M. Gibson, S. M. Allan, and N. J. Rothwell, “Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release,” Journal of Neurochemistry, vol. 98, no. 1, pp. 258–266, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. J. K. Relton and N. J. Rothwell, “Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat,” Brain Research Bulletin, vol. 29, no. 2, pp. 243–246, 1992. View at Publisher · View at Google Scholar · View at Scopus
  135. M. A. Brown and J. Hural, “Functions of IL-4 and control of its expression,” Critical Reviews in Immunology, vol. 17, no. 1, pp. 1–32, 1997. View at Google Scholar · View at Scopus
  136. P. Wang, P. Wu, M. I. Siegel, R. W. Egan, and M. M. Billah, “Interleukin (IL)-10 inhibits nuclear factor κB (NFκB) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms,” The Journal of Biological Chemistry, vol. 270, no. 16, pp. 9558–9563, 1995. View at Publisher · View at Google Scholar · View at Scopus
  137. P. H. Hart, G. F. Vitti, D. R. Burgess, G. A. Whitty, D. S. Piccoli, and J. A. Hamilton, “Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor α, interleukin 1, and prostagandin E2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 10, pp. 3803–3807, 1989. View at Google Scholar
  138. C. C. Chao, T. W. Molitor, and S. Hu, “Neuroprotective role of IL-4 against activated microglia,” Journal of Immunology, vol. 151, no. 3, pp. 1473–1481, 1993. View at Google Scholar · View at Scopus
  139. A. M. Szczepanik, S. Funes, W. Petko, and G. E. Ringheim, “IL-4, IL-10 and IL-13 modulate Aβ(1-42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line,” Journal of Neuroimmunology, vol. 113, no. 1, pp. 49–62, 2001. View at Publisher · View at Google Scholar
  140. K. Strle, J. H. Zhou, W. H. Shen et al., “Interleukin-10 in the brain,” Critical Reviews in Immunology, vol. 21, no. 5, pp. 427–449, 2001. View at Google Scholar · View at Scopus
  141. S. Franciosi, H. B. Choi, S. U. Kim, and J. G. McLarnon, “IL-8 enhancement of amyloid-beta (Abeta 1-42)-induced expression and production of pro-inflammatory cytokines and COX-2 in cultured human microglia,” Journal of Neuroimmunology, vol. 159, pp. 66–74, 2005. View at Google Scholar
  142. A. Ledeboer, J. J. P. Brevé, A. Wierinckx et al., “Expression and regulation of interleukin-10 and interleukin-10 receptor in rat astroglial and microglial cells,” European Journal of Neuroscience, vol. 16, no. 7, pp. 1175–1185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  143. C. J. P. Clarke, A. Hales, A. Hunt, and B. M. J. Foxwell, “IL-10-mediated suppression of TNF-α production is independent of its ability to inhibit NFκB activity,” European Journal of Immunology, vol. 28, no. 5, pp. 1719–1726, 1998. View at Google Scholar
  144. C. Gerard, C. Bruyns, A. Marchant et al., “Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia,” Journal of Experimental Medicine, vol. 177, no. 2, pp. 547–550, 1993. View at Google Scholar · View at Scopus
  145. A. Marchant, C. Bruyns, P. Vandenabeele et al., “Interleukin-10 controls interferon-γ and tumor necrosis factor production during experimental endotoxemia,” European Journal of Immunology, vol. 24, no. 5, pp. 1167–1171, 1994. View at Google Scholar · View at Scopus
  146. H. L. Dickensheets, S. L. Freeman, M. F. Smith, and R. P. Donnelly, “Interleukin-10 upregulates tumor necrosis factor receptor type-II (p75) gene expression in endotoxin-stimulated human monocytes,” Blood, vol. 90, no. 10, pp. 4162–4171, 1997. View at Google Scholar · View at Scopus
  147. D. A. Joyce, D. P. Gibbons, P. Green, J. H. Steer, M. Feldmann, and F. M. Brennan, “Two inhibitors of pro-inflammatory cytokine release, interleukin-10 and interleukin-4, have contrasting effects on release of soluble p75 tumor necrosis factor receptor by cultured monocytes,” European Journal of Immunology, vol. 24, no. 11, pp. 2699–2705, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. P. Norgaard, S. Hougaard, H. S. Poulsen, and M. Spang-Thomsen, “Transforming growth factor beta and cancer,” Cancer Treatment Reviews, vol. 21, pp. 367–403, 1995. View at Google Scholar
  149. D. M. Kingsley, “The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms,” Genes and Development, vol. 8, no. 2, pp. 133–146, 1994. View at Google Scholar · View at Scopus
  150. J. J. Letterio and A. B. Roberts, “TGF-β: a critical modulator of immune cell function,” Clinical Immunology and Immunopathology, vol. 84, no. 3, pp. 244–250, 1997. View at Publisher · View at Google Scholar
  151. E. A. Van Der Wal, F. Gomez-Pinilla, and C. W. Cotman, “Transforming growth factor-β1 is in plaques in Alzheimer and Down pathologies,” NeuroReport, vol. 4, no. 1, pp. 69–72, 1993. View at Google Scholar · View at Scopus
  152. C. C. Chao, S. Hu, W. H. Frey 2nd, T. A. Ala, W. W. Tourtellotte, and P. K. Peterson, “Transforming growth factor beta in Alzheimer's disease,” Clinical and Diagnostic Laboratory Immunology, vol. 1, no. 1, pp. 109–110, 1994. View at Google Scholar
  153. C. C. Chun, T. A. Ala, S. Hu et al., “Serum cytokine levels in patients with Alzheimer's disease,” Clinical and Diagnostic Laboratory Immunology, vol. 1, no. 4, pp. 433–436, 1994. View at Google Scholar
  154. T. Wyss-Coray, L. Lin, D. Von Euw, E. Masliah, L. Mucke, and P. Lacombe, “Alzheimer's disease-like cerebrovascular pathology in transforming growth factor-β1 transgenic mice and functional metabolic correlates,” Annals of the New York Academy of Sciences, vol. 903, pp. 317–323, 2000. View at Google Scholar · View at Scopus
  155. C. F. Lippa, H. Fujiwara, D. M.A. Mann et al., “Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer's disease patients with mutations in presenilin and amyloid precursor protein genes,” American Journal of Pathology, vol. 153, no. 5, pp. 1365–1370, 1998. View at Google Scholar
  156. R. Levi-Montalcini, “The nerve growth factor: thirty-five years later,” Bioscience Reports, vol. 7, no. 9, pp. 681–699, 1987. View at Google Scholar
  157. I. Blasko, W. Lederer, H. Oberbauer et al., “Measurement of thirteen biological markers in CSF of patients with Alzheimer's disease and other dementias,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 1, pp. 9–15, 2005. View at Publisher · View at Google Scholar · View at PubMed
  158. C. Hock, K. Heese, F. Müller-Spahn et al., “Increased CSF levels of nerve growth factor in patients with Alzheimer's disease,” Neurology, vol. 54, no. 10, pp. 2009–2011, 2000. View at Google Scholar · View at Scopus
  159. J. Marksteiner, M. Pirchl, C. Ullrich et al., “Analysis of cerebrospinal fluid of Alzheimer patients: biomarkers and toxic properties,” Pharmacology, vol. 82, no. 3, pp. 214–220, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  160. L. Olson, A. Nordberg, H. Von Holst et al., “Nerve growth factor effects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient. (Case report),” Journal of Neural Transmission, vol. 4, no. 1, pp. 79–95, 1992. View at Google Scholar
  161. M. Fahnestock, B. Michalski, B. Xu, and M. D. Coughlin, “The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease,” Molecular and Cellular Neuroscience, vol. 18, no. 2, pp. 210–220, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  162. E. J. Mufson, S. Y. Ma, J. Dills et al., “Loss of basal forebrain p75NTR immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease,” Journal of Comparative Neurology, vol. 443, no. 2, pp. 136–153, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  163. D. Fukumura, L. Xu, Y. Chen, T. Gohongi, B. Seed, and R. K. Jain, “Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo,” Cancer Research, vol. 61, no. 16, pp. 6020–6024, 2001. View at Google Scholar · View at Scopus
  164. E. Tarkowski, R. Issa, M. Sjögren et al., “Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer's disease and vascular dementia,” Neurobiology of Aging, vol. 23, no. 2, pp. 237–243, 2002. View at Publisher · View at Google Scholar
  165. D. Gianni, N. Zambrano, M. Bimonte et al., “Platelet-derived growth factor induces the β-γ-secretase-mediated cleavage of Alzheimer's amyloid precursor protein through a Src-Rac-dependent pathway,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 9290–9297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  166. N. Zambrano, D. Gianni, P. Bruni, F. Passaro, F. Telese, and T. Russo, “Fe65 is not involved in the platelet-derived growth factor-induced processing of Alzheimer's amyloid precursor protein, which activates its caspase-directed cleavage,” The Journal of Biological Chemistry, vol. 279, no. 16, pp. 16161–16169, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. J. S. Lim, H. Cho, H. S. Hong, H. Kwon, I. Mook-Jung, and Y. K. Kwon, “Upregulation of amyloid precursor protein by platelet-derived growth factor in hippocampal precursor cells,” NeuroReport, vol. 18, no. 12, pp. 1225–1229, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. E. Carro, J. L. Trejo, T. Gomez-Isla, D. LeRoith, and I. Torres-Aleman, “Serum insulin-like growth factor I regulates brain amyloid-β levels,” Nature Medicine, vol. 8, no. 12, pp. 1390–1397, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  169. D. Aguado-Llera, E. Arilla-Ferreiro, A. Campos-Barros, L. Puebla-Jiménez, and V. Barrios, “Protective effects of insulin-like growth factor-I on the somatostatinergic system in the temporal cortex of β-amyloid-treated rats,” Journal of Neurochemistry, vol. 92, no. 3, pp. 607–615, 2005. View at Publisher · View at Google Scholar · View at PubMed
  170. Y. Hashimoto, T. Chiba, M. Yamada et al., “Transforming growth factor β2 is a neuronal death-inducing ligand for amyloid-β precursor protein,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9304–9317, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  171. Y. Hashimoto, M. Nawa, T. Chiba, S. Aiso, I. Nishimoto, and M. Matsuoka, “Transforming growth factor β2 autocrinally mediates neuronal cell death induced by amyloid-β,” Journal of Neuroscience Research, vol. 83, no. 6, pp. 1039–1047, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  172. I. Morita, “Distinct functions of COX-1 and COX-2,” Prostaglandins and Other Lipid Mediators, vol. 68-69, pp. 165–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  173. J. J. M. Hoozemans, R. Veerhuis, A. J. M. Rozemuller, and P. Eikelenboom, “Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease,” Current Drug Targets, vol. 4, no. 6, pp. 461–468, 2003. View at Google Scholar · View at Scopus
  174. B. A. In't Veid, L. J. Launer, M. M. B. Breteler, A. Hofman, and B. H. C. Stricker, “Pharmacologic agents associated with a preventive effect on Alzheimer's disease: a review of the epidemiologic evidence,” Epidemiologic Reviews, vol. 24, no. 2, pp. 248–268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Etminan, S. Gill, and A. Samii, “Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: systematic review and meta-analysis of observational studies,” British Medical Journal, vol. 327, no. 7407, pp. 128–131, 2003. View at Google Scholar · View at Scopus
  176. G. M. Pasinetti, “From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer's disease: the role of NSAIDs and cyclooxygenase in β-amyloidosis and clinical dementia,” Journal of Alzheimer's Disease, vol. 4, no. 5, pp. 435–445, 2002. View at Google Scholar · View at Scopus
  177. P. P. Zandi and J. C. S. Breitner, “Do NSAIDs prevent Alzheimer's disease? And, if so, why? The epidemiological evidence,” Neurobiology of Aging, vol. 22, no. 6, pp. 811–817, 2001. View at Publisher · View at Google Scholar · View at Scopus
  178. B. A. in 't Veld, A. Ruitenberg, A. Hofman et al., “Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease,” The New England Journal of Medicine, vol. 345, no. 21, pp. 1515–1521, 2001. View at Publisher · View at Google Scholar · View at Scopus
  179. I. R. A. Mackenzie, “Postmortem studies of the effect of anti-inflammatory drugs on Alzheimer-type pathology and associated inflammation,” Neurobiology of Aging, vol. 22, no. 6, pp. 819–822, 2001. View at Publisher · View at Google Scholar · View at Scopus
  180. L. Ho, C. Pieroni, D. Winger, D. P. Purohit, P. S. Aisen, and G. M. Pasinetti, “Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer's disease,” Journal of Neuroscience Research, vol. 57, no. 3, pp. 295–303, 1999. View at Google Scholar · View at Scopus
  181. K. Yasojima, C. Schwab, E. G. McGeer, and P. L. McGeer, “Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs,” Brain Research, vol. 830, no. 2, pp. 226–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  182. S. Nogawa, M. Takao, S. Suzuki, K. Tanaka, A. Koto, and Y. Fukuuchi, “COX-2 expression in brains of patients with familial Alzheimer's disease,” International Congress Series, vol. 1252, pp. 363–372, 2003. View at Google Scholar
  183. S. Weggen, J. L. Eriksen, P. Das et al., “A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity,” Nature, vol. 414, no. 6860, pp. 212–216, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  184. Q. Yan, J. Zhang, H. Liu et al., “Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer's disease,” Journal of Neuroscience, vol. 23, no. 20, pp. 7504–7509, 2003. View at Google Scholar · View at Scopus
  185. J. L. Eriksen, S. A. Sagi, T. E. Smith et al., “NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo,” Journal of Clinical Investigation, vol. 112, no. 3, pp. 440–449, 2003. View at Publisher · View at Google Scholar
  186. I. Blasko, A. Apochal, G. Boeck, T. Hartmann, B. Grubeck-Loebenstein, and G. Ransmayr, “Ibuprofen decreases cytokine-induced amyloid beta production in neuronal cells,” Neurobiology of Disease, vol. 8, no. 6, pp. 1094–1101, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  187. C. Bate, R. Veerhuis, P. Eikelenboom, and A. Williams, “Neurones treated with cyclo-oxygenase-1 inhibitors are resistant to amyloid-beta1-42,” Neuroreport, vol. 14, no. 16, pp. 2099–2103, 2003. View at Google Scholar · View at Scopus
  188. C. K. Combs, P. Bates, J. C. Karlo, and G. E. Landreth, “Regulation of β-amyloid stimulated proinflammatory responses by peroxisome proliferator-activated receptor α,” Neurochemistry International, vol. 39, no. 5-6, pp. 449–457, 2001. View at Publisher · View at Google Scholar
  189. G. E. Landreth and M. T. Heneka, “Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer's disease,” Neurobiology of Aging, vol. 22, no. 6, pp. 937–944, 2001. View at Publisher · View at Google Scholar · View at Scopus
  190. P. S. Aisen, “The potential of anti-inflammatory drugs for the treatment of Alzheimer's disease,” The Lancet Neurology, vol. 1, no. 5, pp. 279–284, 2002. View at Publisher · View at Google Scholar · View at Scopus
  191. P. S. Aisen, K. A. Schafer, M. Grundman et al., “. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial,” Journal of the American Medical Association, vol. 289, no. 21, pp. 2819–2826, 2003. View at Google Scholar · View at Scopus
  192. S. A. Reines, G. A. Block, J. C. Morris et al., “No effect on Alzheimer's disease in a 1-year, randomized, blinded, controlled study,” Neurology, vol. 62, no. 1, pp. 66–71, 2004. View at Google Scholar · View at Scopus
  193. M. Hüll, K. Lieb, and B. L. Fiebich, “Pathways of inflammatory activation in Alzheimer's disease: potential targets for disease modifying drugs,” Current Medicinal Chemistry, vol. 9, no. 1, pp. 83–88, 2002. View at Google Scholar · View at Scopus
  194. M. E. Harris-White, T. Chu, S. A. Miller et al., “Estrogen (E2) and glucocorticoid (Gc) effects on microglia and Aβ clearance in vitro and in vivo,” Neurochemistry International, vol. 39, no. 5-6, pp. 435–448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  195. A. M. Szczepanik and G. E. Ringheim, “IL-10 and glucocorticoids inhibit Aβ(1-42) and lipopolysaccharide-induced pro-inflammatory cytokine and chemokine induction in the central nervous system,” Journal of Alzheimer's Disease, vol. 5, no. 2, pp. 105–117, 2003. View at Google Scholar · View at Scopus
  196. P. S. Aisen, K. L. Davis, J. D. Berg et al., “A randomized controlled trial of prednisone in Alzheimer's disease,” Neurology, vol. 54, no. 3, pp. 588–593, 2000. View at Google Scholar
  197. E. Ferrari, A. Arcaini, R. Gornati et al., “Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia,” Experimental Gerontology, vol. 35, no. 9-10, pp. 1239–1250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  198. E. R. Peskind, C. W. Wilkinson, E. C. Petrie, G. D. Schellenberg, and M. A. Raskind, “Increased CSF cortisol in AD is a function of APOE genotype,” Neurology, vol. 56, no. 8, pp. 1094–1098, 2001. View at Google Scholar · View at Scopus
  199. G. R. Beecher, “Overview of dietary flavonoids: nomenclature, occurrence and intake,” Journal of Nutrition, vol. 133, no. 10, pp. 3248S–3254S, 2003. View at Google Scholar · View at Scopus
  200. F. Hashimoto, M. Ono, C. Masuoka et al., “Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 2, pp. 396–401, 2003. View at Google Scholar
  201. W. Bors and M. Saran, “Radical scavenging by flavonoid antioxidants,” Free Radical Research Communications, vol. 2, no. 4–6, pp. 289–294, 1987. View at Google Scholar · View at Scopus
  202. L. T. Zheng, J. Ock, B. M. Kwon, and K. Suk, “Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity,” International Immunopharmacology, vol. 8, no. 3, pp. 484–494, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  203. J. S. Kim and C. Jobin, “The flavonoid luteolin prevents lipopolysaccharide-induced NF-κB signalling and gene expression by blocking IκB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells,” Immunology, vol. 115, no. 3, pp. 375–387, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  204. J. Y. Kim, T. Kina, Y. Iwanaga, H. Noguchi, K. Matsumura, and S. H. Hyon, “Tea polyphenol inhibits allostimulation in mixed lymphocyte culture,” Cell Transplantation, vol. 16, no. 1, pp. 75–83, 2007. View at Google Scholar · View at Scopus
  205. H. K. Tae, H. L. Jin, K. S. Chung et al., “Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination,” Cancer Research, vol. 67, no. 2, pp. 802–811, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  206. K. Min, W. K. Yoon, S. K. Kim, and B. H. Kim, “Immunosuppressive effect of silibinin in experimental autoimmune encephalomyelitis,” Archives of Pharmacal Research, vol. 30, no. 10, pp. 1265–1272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. H. Y. Ahn, Y. Xu, and S. T. Davidge, “Epigallocatechin-3-O-gallate inhibits TNFα-induced monocyte chemotactic protein-1 production from vascular endothelial cells,” Life Sciences, vol. 82, no. 17-18, pp. 964–968, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  208. Z. Xu, S. Chen, X. Li, G. Luo, L. Li, and W. Le, “Neuroprotective effects of (−)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis,” Neurochemical Research, vol. 31, no. 10, pp. 1263–1269, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  209. P. Goyarzu, D. H. Malin, F. C. Lau et al., “Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats,” Nutritional Neuroscience, vol. 7, no. 2, pp. 75–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  210. J. A. Joseph, N. A. Denisova, G. Arendash et al., “Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model,” Nutritional Neuroscience, vol. 6, no. 3, pp. 153–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  211. D. F. Obregon, K. Rezai-Zadeh, Y. Bai et al., “ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate- induced α-secretase cleavage of amyloid precursor protein,” The Journal of Biological Chemistry, vol. 281, no. 24, pp. 16419–16427, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  212. D. Laurin, K. H. Masaki, D. J. Foley, L. R. White, and L. J. Launer, “Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia Aging Study,” American Journal of Epidemiology, vol. 159, no. 10, pp. 959–967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  213. L. R. White, H. Petrovitch, G. W. Ross et al., “Brain aging and midlife tofu consumption,” Journal of the American College of Nutrition, vol. 19, no. 2, pp. 242–255, 2000. View at Google Scholar · View at Scopus
  214. M. J. Engelhart, M. I. Geerlings, A. Ruitenberg et al., “Dietary intake of antioxidants and risk of Alzheimer disease,” Journal of the American Medical Association, vol. 287, no. 24, pp. 3223–3229, 2002. View at Google Scholar · View at Scopus
  215. D. Commenges, V. Scotet, S. Renaud, H. Jacqmin-Gadda, P. Barberger-Gateau, and J. F. Dartigues, “Intake of flavonoids and risk of dementia,” European Journal of Epidemiology, vol. 16, no. 4, pp. 357–363, 2000. View at Publisher · View at Google Scholar · View at Scopus