Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 796327, 7 pages
http://dx.doi.org/10.1100/2012/796327
Research Article

Ecology of Indigenous Lactic Acid Bacteria along Different Winemaking Processes of Tempranillo Red Wine from La Rioja (Spain)

Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC, Universidad de La Rioja, Gobierno de La Rioja, C/Madre de Dios 51, La Rioja, 26006 Logroño, Spain

Received 2 November 2011; Accepted 5 December 2011

Academic Editors: E. Garcia-Moruno and Z.-X. Quan

Copyright © 2012 Lucía González-Arenzana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.A. Suárez and B. Íñigo, Microbiología Enológica: Fundamentos de Vinificación, Mundi Prensa, Madrid, Spain, 3rd edition, 2004.
  2. M. Salema, J. S. Lolkema, M. V. San Romão, and M. C. Loureiro Dias, “The proton motive force generated in Leuconostoc oenos by L-malate fermentation,” Journal of Bacteriology, vol. 178, no. 11, pp. 3127–3132, 1996. View at Google Scholar · View at Scopus
  3. C. R. Davis, D. J. Wibowo, T. H. Lee, and G. H. Fleet, “Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH,” Applied and Environmental Microbiology, vol. 51, no. 3, pp. 539–545, 1986. View at Google Scholar · View at Scopus
  4. M. Dols-Lafargue, E. Gindreau, C. Le Marrec, G. Chambat, A. Heyraud, and A. Lonvaud-Funel, “Changes in red wine soluble polysaccharide composition induced by malolactic fermentation,” Journal of Agricultural and Food Chemistry, vol. 55, no. 23, pp. 9592–9599, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. A. Pozo-Bayón, E. G. Alegría, M. C. Polo et al., “Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures,” Journal of Agricultural and Food Chemistry, vol. 53, no. 22, pp. 8729–8735, 2005. View at Publisher · View at Google Scholar · View at PubMed
  6. J. Guzzo, M. P. Jobin, F. Delmas et al., “Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase,” International Journal of Food Microbiology, vol. 55, no. 1–3, pp. 27–31, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Guzzo, F. Coucheney, F. Pierre et al., “Acidophilic behaviour of the malolactic bacterium Oenococcus oeni,” Sciences des Aliments, vol. 22, no. 1-2, pp. 107–111, 2002. View at Google Scholar · View at Scopus
  8. I. López, C. Tenorio, M. Zarazaga, M. Dizy, C. Torres, and F. Ruiz-Larrea, “Evidence of mixed wild populations of Oenococcus oeni strains during wine spontaneous malolactic fermentations,” European Food Research and Technology, vol. 226, no. 1-2, pp. 215–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Solieri, F. Genova, M. De Paola, and P. Giudici, “Characterization and technological properties of Oenococcus oeni strains from wine spontaneous malolactic fermentations: a framework for selection of new starter cultures,” Journal of Applied Microbiology, vol. 108, no. 1, pp. 285–298, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. E. J. Bartowsky and P. A. Henschke, “The 'buttery' attribute of wine—diacetyl—desirability, spoilage and beyond,” International Journal of Food Microbiology, vol. 96, no. 3, pp. 235–252, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. Marcobal, P. J. Martin-Alvarez, M. C. Polo, R. Munoz, and M. V. Moreno-Arribas, “Formation of biogenic amines throughout the industrial manufacture of red wine,” Journal of Food Protection, vol. 69, no. 2, pp. 397–404, 2006. View at Google Scholar · View at Scopus
  12. R. López, I. López-Alfaro, A. R. Gutiérrez et al., “Malolactic fermentation of Tempranillo wine: contribution of the lactic acid bacteria inoculation to sensory quality and chemical composition,” International Journal of Food Science and Technology, vol. 46, no. 11, pp. 2373–2381, 2011. View at Publisher · View at Google Scholar
  13. S. Guerrini, A. Bastianini, G. Blaiotta et al., “Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines,” International Journal of Food Microbiology, vol. 83, no. 1, pp. 1–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Andorrà, S. Landi, A. Mas, B. Esteve-Zarzoso, and J. M. Guillamón, “Effect of fermentation temperature on microbial population evolution using culture-independent and dependent techniques,” Food Research International, vol. 43, no. 3, pp. 773–779, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Reguant, R. Carreté, M. Constantí, and A. Bordons, “Population dynamics of Oenococcus oeni strains in a new winery and the effect of SO2 and yeast strain,” FEMS Microbiology Letters, vol. 246, no. 1, pp. 111–117, 2005. View at Publisher · View at Google Scholar · View at PubMed
  16. F. Coucheney, N. Desroche, M. Bou, R. Tourdot-Maréchal, L. Dulau, and J. Guzzo, “A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters,” International Journal of Food Microbiology, vol. 105, no. 3, pp. 463–470, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. M. Izquierdo, E. García, J. Martínez, and J. L. Chacón, “Selection of lactic bacteria to induce malolactic fermentation in red wine of cv. Cencibel,” Vitis, vol. 43, no. 3, pp. 149–153, 2004. View at Google Scholar
  18. P. Ruiz, P. M. Izquierdo, S. Seseña, and M. L. Palop, “Selection of autochthonous Oenococcus oeni strains according to their oenological properties and vinification results,” International Journal of Food Microbiology, vol. 137, no. 2-3, pp. 230–235, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. V. Renouf, O. Claisse, and A. Lonvaud-Funel, “Inventory and monitoring of wine microbial consortia,” Applied Microbiology and Biotechnology, vol. 75, no. 1, pp. 149–164, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. P. Ruiz, P. M. Izquierdo, S. Seseña, and M. L. Palop, “Intraspecific genetic diversity of lactic acid bacteria from malolactic fermentation of Cencibel wines as derived from combined analysis of RAPD-PCR and PFGE patterns,” Food Microbiology, vol. 25, no. 7, pp. 942–948, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. European Community, “Community methods for the analysis of wine,” Commission Regulation 26/76/90, 1990. View at Google Scholar
  22. R. López, P. Santamaría, and A. R. Gutiérrez, Aspectos Prácticos de la Fermentación Maloláctica en Vinos Tintos, Editorial Académica Española, Madrid, Spain, 1st edition, 2011.
  23. J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. Y. Staley, and S. T. Williams, Bergey's Manual of Determinative Bacteriology, Hensyl WR, Baltimore, Md, USA, 9th edition, 1994.
  24. L. Beneduce, G. Spano, A. Vernile, D. Tarantino, and S. Massa, “Molecular characterization of lactic acid populations associated with wine spoilage,” Journal of Basic Microbiology, vol. 44, no. 1, pp. 10–16, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. G. Zapparoli, S. Torriani, P. Pesente, and F. Dellaglio, “Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine,” Letters in Applied Microbiology, vol. 27, no. 5, pp. 243–246, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Lopez, F. Ruiz-Larrea, L. Cocolin et al., “Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis,” Applied and Environmental Microbiology, vol. 69, no. 11, pp. 6801–6807, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. B. Birren and E. Lai, Pulsed Field Gel Electrophoresis: A Practical Guide, Academic Press, San Diego, Calif, USA, 1st edition, 1993.
  29. M. Larisika, H. Claus, and H. König, “Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany,” International Journal of Food Microbiology, vol. 123, no. 1-2, pp. 171–176, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. A. Lonvaud-Funel, “Biogenic amines in wines: role of lactic acid bacteria,” FEMS Microbiology Letters, vol. 199, no. 1, pp. 9–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Landete, B. De Las Rivas, A. Marcobal, and R. Muñoz, “PCR methods for the detection of biogenic amine-producing bacteria on wine,” Annals of Microbiology, vol. 61, no. 1, pp. 159–166, 2011. View at Publisher · View at Google Scholar
  32. R. Guzzon, E. Poznanski, L. Conterno, P. Vagnoli, S. Krieger-Weber, and A. Cavazza, “Selection of a new highly resistant strain for malolactic fermentation under difficult conditions,” South African Journal of Enology and Viticulture, vol. 30, no. 2, pp. 133–141, 2009. View at Google Scholar · View at Scopus
  33. C. Reguant, R. Carreté, N. Ferrer, and A. Bordons, “Molecular analysis of Oenococcus oeni population dynamics and the effect of aeration and temperature during alcoholic fermentation on malolactic fermentation,” International Journal of Food Science and Technology, vol. 40, no. 4, pp. 451–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. P. M. I. Cañas, P. R. Pérez, S. S. Prieto, and M. L. P. Herreros, “Ecological study of lactic acid microbiota isolated from Tempranillo wines of Castilla-La Mancha,” Journal of Bioscience and Bioengineering, vol. 108, no. 3, pp. 220–224, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. B. Rojo-Bezares, Y. Sáenz, L. Navarro, M. Zarazaga, F. Ruiz-Larrea, and C. Torres, “Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must,” Food Microbiology, vol. 24, no. 5, pp. 482–491, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. F. Bert, C. Branger, and N. Lambert-Zechovsky, “Pulsed-field gel electrophoresis is more discriminating than multilocus enzyme electrophoresis and random amplified polymorphic DNA analysis for typing pyogenic streptococci,” Current Microbiology, vol. 34, no. 4, pp. 226–229, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Santamaría Aquilúe, Ecología de la Fermentación Alcohólica en la D.O.C.A. Rioja: Selección de Levaduras para la Elaboración de Vinos Tintos, University of La Rioja, La Rioja, Spain, 2009.
  38. P. Garijo, R. López, P. Santamaría et al., “Presence of enological microorganisms in the grapes and the air of a vineyard during the ripening period,” European Food Research and Technology, vol. 233, no. 2, pp. 359–365, 2011. View at Publisher · View at Google Scholar
  39. P. Garijo, R. López, P. Santamaría et al., “Presence of lactic bacteria in the air of a winery during the vinification period,” International Journal of Food Microbiology, vol. 136, no. 1, pp. 142–146, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. N. Francesca, M. Chiurazzi, R. Romano, M. Aponte, L. Settanni, and G. Moschetti, “Indigenous yeast communities in the environment of “Rovello bianco” grape variety and their use in commercial white wine fermentation,” World Journal of Microbiology and Biotechnology, vol. 26, no. 2, pp. 337–351, 2010. View at Publisher · View at Google Scholar · View at Scopus