Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 842348, 8 pages
http://dx.doi.org/10.1100/2012/842348
Research Article

Regulating Drug Release Behavior and Kinetics from Matrix Tablets Based on Fine Particle-Sized Ethyl Cellulose Ether Derivatives: An In Vitro and In Vivo Evaluation

Drug Delivery Research Centre, Department of Pharmaceutics, Faculty of Pharmacy, Gomal University D. I. Khan, Pakistan

Received 16 October 2011; Accepted 20 November 2011

Academic Editors: I. Caraballo and A. Nokhodchi

Copyright © 2012 Kifayat Ullah Shah and Gul Majid Khan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Khairuzzaman, S. U. Ahmed, M. Savva, and N. K. Patel, “Zero-order release of aspirin, theophylline and atenolol in water from novel methylcellulose glutarate matrix tablets,” International Journal of Pharmaceutics, vol. 318, no. 1-2, pp. 15–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. V. S. Varma, A. M. Kaushal, A. Garg, and S. Garg, “Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems,” The American Journal of Drug Delivery, vol. 2, no. 1, pp. 43–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Navalón, O. Ballesteros, R. Blanc, and J. L. Vílchez, “Determination of ciprofloxacin in human urine and serum samples by solid-phase spectrofluorimetry,” Talanta, vol. 52, no. 5, pp. 845–852, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. S. U. Shah, K. U. Shah, A. Rehman, and G. M. Khan, “Investigating the in vitro drug release kinetics from controlled release diclofenac potassium-ethocel matrix tablets and the influence of co-excipients on drug release patterns,” Pakistan Journal of Pharmaceutical Sciences, vol. 24, no. 2, pp. 183–192, 2011. View at Google Scholar
  5. S. Lakshmana Prabu, A. A. Shirwaikar, A. Shirwaikar, G. Ravikumar, A. Kumar, and A. Jacob, “Formulation and evaluation of oral sustained release of Diltiazem Hydrochloride using rosin as matrix forming material,” Ars Pharmaceutica, vol. 50, no. 1, pp. 32–42, 2009. View at Google Scholar · View at Scopus
  6. G. Xu and H. Sunada, “Influence of formulation change on drug release kinetics from hydroxypropylmethylcellulose matrix tablets,” Chemical and Pharmaceutical Bulletin, vol. 43, no. 3, pp. 483–487, 1995. View at Google Scholar
  7. T. Higuchi, “Mechanism of rate of sustained-action medication. Theoretical analysis of rate of solid drugs dispersed in matrices,” Journal of Pharmaceutical Sciences, vol. 52, pp. 1145–1149, 1963. View at Google Scholar
  8. P. L. Ritger and N. A. Peppas, “A simple equation for description of solute release II. Fickian and anomalous release from swellable devices,” Journal of Controlled Release, vol. 5, no. 1, pp. 37–42, 1987. View at Google Scholar · View at Scopus
  9. A. Badshah, F. Subhan, and K. Rauf, “Controlled release matrix tablets of olanzapine: influence of polymers on the in vitro release and bioavailability,” AAPS PharmSciTech, vol. 11, no. 3, pp. 1397–1404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. U. Rehman, K. H. Yuen, and J. W. Wong, “In vitro performance of controlled release pallets of Diltiazem HCl,” Pakistan Journal of Pharmaceutical Sciences, vol. 18, no. 2, pp. 44–48, 2005. View at Google Scholar
  11. M. Gibaldi and D. Perrier, “Absorption kinetics and bioavailability,” in Pharmacokinetics, pp. 145–195, Marcel Dekker, New York, NY, USA, 2nd edition, 1982. View at Google Scholar
  12. J. G. Wagner and E. Nelson, “Kinetics analysis of blood levels and urinary excretion in the absorption phase after single doses of drug,” Journal of Pharmaceutical Sciences, vol. 53, pp. 1392–1403, 1964. View at Google Scholar
  13. E. O. Edna, M. M. Telma, M. K Maria, V. R. V. Vladi, and V. O. Consiglieri, “Influence of cellulose polymers type on in vitro controlled release tablets containing theophylline,” The Brazilian Journal of Pharmaceutical Sciences, vol. 43, no. 4, pp. 571–579, 2007. View at Google Scholar · View at Scopus
  14. K. V. Ranga Rao and K. Padmalatha Devi, “Swelling controlled-release systems: recent developments and applications,” International Journal of Pharmaceutics, vol. 48, no. 1–3, pp. 1–16, 1988. View at Google Scholar · View at Scopus
  15. G. M. Khan and J. B. Zhu, “Ibuprofen release kinetics from controlled-release tablets granulated with aqueous polymeric dispersion of ethylcellulose II: influence of several parameters and coexcipients,” Journal of Controlled Release, vol. 56, no. 1–3, pp. 127–134, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. G. M. Khan and J. B. Zhu, “Evaluation of Ethocel Premium ethyl cellulose derivatives with different molecular weighs as controlled release matrix forming functional polymers for Ibuprofen,” Sciences, vol. 1, pp. 361–367, 2001. View at Google Scholar
  17. N. A. Kasim, M. Whitehouse, C. Ramachandran et al., “Molecular properties of WHO essential drugs and provisional biopharmaceutical classification,” Molecular Pharmacology, vol. 1, no. 1, pp. 85–96, 2004. View at Google Scholar · View at Scopus