Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 857249, 8 pages
http://dx.doi.org/10.1100/2012/857249
Research Article

Siderophore-Producing Bacteria from a Sand Dune Ecosystem and the Effect of Sodium Benzoate on Siderophore Production by a Potential Isolate

Department of Microbiology, Goa University, Taleigao Plateau, Goa 403 206, India

Received 28 October 2011; Accepted 12 December 2011

Academic Editor: Bernard Paul

Copyright © 2012 Teja Gaonkar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. B. Arun, K. R. Beena, N. S. Raviraja, and K. R. Sridhar, “Coastal sand dunes—a neglected ecosystem,” Current Science, vol. 77, pp. 19–21, 1999. View at Google Scholar
  2. A. B. Arun and K. R. Sridhar, “Symbiotic performance of fast-growing rhizobia isolated from the coastal sand dune legumes of west coast of India,” Biology and Fertility of Soils, vol. 40, no. 6, pp. 435–439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. I. J. T. Dinkla, E. M. Gabor, and D. B. Janssen, “Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid,” Applied and Environmental Microbiology, vol. 67, no. 8, pp. 3406–3412, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. Lee, J. O. Do, M. S. Park et al., “Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis,” Antonie van Leeuwenhoek, vol. 90, no. 1, pp. 19–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Park, S. R. Jung, M. S. Lee et al., “Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis,” Journal of Microbiology, vol. 43, no. 3, pp. 219–227, 2005. View at Google Scholar · View at Scopus
  6. B. R. Glick, “The enhancement of plant growth by free-living bacteria,” Canadian Journal of Microbiology, vol. 41, no. 2, pp. 109–117, 1995. View at Google Scholar · View at Scopus
  7. D. Egamberdiyeva, “Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in serozem soil, semi arid region of Uzbekistan,” TheScientificWorldJournal, vol. 5, pp. 501–509, 2005. View at Google Scholar · View at Scopus
  8. D. M. Sylvia and N. J. Burks, “Selection of a vesicular-arbuscular mycorrhizal fungus For practical inoculation of Uniola paniculata,” Mycologia, vol. 80, pp. 565–568, 1988. View at Google Scholar
  9. D. S. Shin, M. S. Park, S. Jung et al., “Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants,” Journal of Microbiology and Biotechnology, vol. 17, no. 8, pp. 1361–1368, 2007. View at Google Scholar · View at Scopus
  10. S. E. Smith and D. J. Read, Mycorrhizal Symbiosis, Academic Press, San Diego, Calif, USA, 1997.
  11. S. Dobbelaere, J. Vanderleyden, and Y. Okon, “Plant growth-promoting effects of diazotrophs in the rhizosphere,” Critical Reviews in Plant Sciences, vol. 22, no. 2, pp. 107–149, 2003. View at Google Scholar · View at Scopus
  12. A. Sharma, B. N. Johri, A. K. Sharma, and B. R. Glick, “Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck),” Soil Biology and Biochemistry, vol. 35, no. 7, pp. 887–894, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Godinho, R. Ramesh, and S. Bhosle, “Bacteria from sand dunes of Goa promoting growth in Eggplant,” World Journal of Agricultural Sciences, vol. 6, no. 5, pp. 555–564, 2010. View at Google Scholar
  14. I. Jarvis and K. E. Jarvis, “Rare-earth element geochemistry of standard sediments: a study using inductively coupled plasma spectrometry,” Chemical Geology, vol. 53, no. 3-4, pp. 335–344, 1985. View at Google Scholar · View at Scopus
  15. B. Schwyn and J. B. Neilands, “Universal chemical assay for the detection and determination of siderophores,” Analytical Biochemistry, vol. 160, no. 1, pp. 47–56, 1987. View at Google Scholar · View at Scopus
  16. W. S. Waring and C. H. Werkman, “Growth of bacteria in an iron free medium,” Archive of Biochemistry, vol. 1, pp. 303–310, 1942. View at Google Scholar
  17. R. N. Krieg and G. J. Holt, Bergey’s Manual of Systematic Bacteriology, vol. 1, Williams & Wilkins, 1984.
  18. A. H. P Sneath, S. N. Mair, and E. M. Sharpe, Bergey’s Manual of Systematic Bacteriology, vol. 1 of Bacteriology Symposium, Series No. 2, Williams & Wilkins, Academic Press, London, UK, New York, NY, USA, 1986.
  19. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Press, New York, NY, USA, 1989.
  20. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Parulekar and S. Mavinkurve, “Formation of of ortho-benzoquinone from sodium benzoate by Pseudomonas mendocina P2d,” Indian Journal of Experimental Biology, vol. 44, no. 2, pp. 157–162, 2006. View at Google Scholar · View at Scopus
  23. R. Xiao and W. S. Kisaalita, “Fluorescent pseudomonad pyoverdines bind and oxidize ferrous ion,” Applied and Environmental Microbiology, vol. 64, no. 4, pp. 1472–1476, 1998. View at Google Scholar · View at Scopus
  24. V. Gupta, K. Saharan, L. Kumar, R. Gupta, V. Sahai, and A. Mittal, “Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens Culture,” Biotechnology and Bioengineering, vol. 100, pp. 284–296, 2007. View at Google Scholar
  25. D. A. Phillips, T. C. Fox, M. D. King, T. V. Bhuvaneswari, and L. R. Teuber, “Microbial products trigger amino acid exudation from plant roots,” Plant Physiology, vol. 136, no. 1, pp. 2887–2894, 2004. View at Google Scholar · View at Scopus
  26. W. D. Bauer and U. Mathesius, “Plant responses to bacterial quorum sensing signals,” Current Opinion in Plant Biology, vol. 7, no. 4, pp. 429–433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. E. Bullard and K. White, “Dust production and the release of iron oxides resulting from the aeolian abrasion of natural dune sands,” Earth Surface Processes and Landforms, vol. 30, no. 1, pp. 95–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. S. Goudie and N. J. Middleton, “Saharan dust storms: nature and consequences,” Earth-Science Reviews, vol. 56, no. 1–4, pp. 179–204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Y. Canbolat, B. Serdar, A. Ramazan, A. Fikretin, and A. Adil, “Effect of plant growth promoting bacteria and soil composition on barley seedling growth, nutrient uptake, soil properties and rhizhosphere microflora,” Biology and Fertility of Soils, vol. 42, pp. 350–357, 2006. View at Google Scholar
  30. M. Shishido, H. B. Massicotte, and C. P. Chanway, “Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection,” Annals of Botany, vol. 77, no. 5, pp. 433–441, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Braud, M. Hannauer, G. L. A. Mislin, and I. J. Schalk, “The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity,” Journal of Bacteriology, vol. 191, no. 11, pp. 3517–3525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Cornelis, S. Matthijs, and L. Van Oeffelen, “Iron uptake regulation in Pseudomonas aeruginosa,” BioMetals, vol. 22, no. 1, pp. 15–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. E. Díaz de Villegas, P. Villa, and A. Frías, “Evaluation of the siderophores production by Pseudomonas aeruginosa PSS,” Revista Latinoamericana de Microbiologia, vol. 44, no. 3-4, pp. 112–117, 2002. View at Google Scholar · View at Scopus
  34. P. Visca, F. Imperi, and I. L. Lamont, “Pyoverdine siderophores: from biogenesis to biosignificance,” Trends in Microbiology, vol. 15, no. 1, pp. 22–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. I. E. Staijen and B. Witholt, “Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains,” Biotechnology and Bioengineering, vol. 57, no. 2, pp. 228–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Braun and H. Killmann, “Bacterial solutions to the iron-supply problem,” Trends in Biochemical Sciences, vol. 24, no. 3, pp. 104–109, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. A. D'Onofrio, J. M. Crawford, E. J. Stewart et al., “Siderophores from neighboring organisms promote the growth of uncultured bacteria,” Chemistry and Biology, vol. 17, no. 3, pp. 254–264, 2010. View at Publisher · View at Google Scholar · View at Scopus