Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 912147, 10 pages
http://dx.doi.org/10.1100/2012/912147
Review Article

Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

CNR—Istituto di Biomembrane e Bioenergetica, Via Amendola 165/A, 70126 Bari, Italy

Received 28 October 2011; Accepted 29 November 2011

Academic Editors: A. Heinen, S. K. Ray, and F. Rodrigues

Copyright © 2012 Maša Ždralević et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Google Scholar · View at Scopus
  2. G. Kroemer, L. Galluzzi, P. Vandenabeele et al., “Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009,” Cell Death and Differentiation, vol. 16, no. 1, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. Peter, “Programmed cell death: apoptosis meets necrosis,” Nature, vol. 471, no. 7338, pp. 310–312, 2011. View at Publisher · View at Google Scholar
  4. J. Yuan and G. Kroemer, “Alternative cell death mechanisms in development and beyond,” Genes and Development, vol. 24, no. 23, pp. 2592–2602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Fulda, A. M. Gorman, O. Hori, and A. Samali, “Cellular stress responses: cell survival and cell death,” International Journal of Cell Biology, vol. 2010, Article ID 214074, p. 23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Balakumar, A. Rohilla, and M. Singh, “Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury: what could be the next footstep?” Pharmacological Research, vol. 57, no. 6, pp. 403–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Ferdinandy, R. Schulz, and G. F. Baxter, “Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning,” Pharmacological Reviews, vol. 59, no. 4, pp. 418–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Lehotský, J. Burda, V. Danielisová, M. Gottlieb, P. Kaplán, and B. Saniová, “Ischemic tolerance: the mechanisms of neuroprotective strategy,” Anatomical Record, vol. 292, no. 12, pp. 2002–2012, 2009. View at Publisher · View at Google Scholar
  9. L. Portt, G. Norman, C. Clapp, M. Greenwood, and M. T. Greenwood, “Anti-apoptosis and cell survival: a review,” Biochimica et Biophysica Acta, vol. 1813, no. 1, pp. 238–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Yorimitsu and D. J. Klionsky, “Autophagy: molecular machinery for self-eating,” Cell Death and Differentiation, vol. 12, supplement 2, no. 2, pp. 1542–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Zhou, Y. Yang, and D. Xing, “Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis,” FEBS Journal, vol. 278, no. 3, pp. 403–413, 2011. View at Publisher · View at Google Scholar
  12. M. J. Goldenthal and J. Marín-García, “Mitochondrial signaling pathways: a receiver/integrator organelle,” Molecular and Cellular Biochemistry, vol. 262, no. 1-2, pp. 1–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Degterev, M. Boyce, and J. Yuan, “A decade of caspases,” Oncogene, vol. 22, no. 53, pp. 8543–8567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Kushnareva and D. D. Newmeyer, “Bioenergetics and cell death,” Annals of the New York Academy of Sciences, vol. 1201, pp. 50–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Fulda, “Tumor resistance to apoptosis,” International Journal of Cancer, vol. 124, no. 3, pp. 511–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Clegg, “Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression,” Journal of Experimental Biology, vol. 200, no. 3, pp. 467–475, 1997. View at Google Scholar · View at Scopus
  19. S. C. Hand and M. A. Menze, “Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death,” Journal of Experimental Biology, vol. 211, no. 12, pp. 1829–1840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Mammucari and R. Rizzuto, “Signaling pathways in mitochondrial dysfunction and aging,” Mechanisms of Ageing and Development, vol. 131, no. 7-8, pp. 536–543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kanki, D. J. Klionsky, and K. Okamoto, “Mitochondria autophagy in yeast,” Antioxidants and Redox Signaling, vol. 14, no. 10, pp. 1989–2001, 2011. View at Publisher · View at Google Scholar
  22. M. T. Ryan and N. J. Hoogenraad, “Mitochondrial-nuclear communications,” Annual Review of Biochemistry, vol. 76, pp. 701–722, 2007. View at Publisher · View at Google Scholar
  23. V. K. Mootha, C. M. Lindgren, K. F. Eriksson et al., “PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes,” Nature Genetics, vol. 34, no. 3, pp. 267–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Garrido and G. Kroemer, “Life's smile, death's grin: vital functions of apoptosis-executing proteins,” Current Opinion in Cell Biology, vol. 16, no. 6, pp. 639–646, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Tinel and J. Tschopp, “The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress,” Science, vol. 304, no. 5672, pp. 843–846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. Miramar, P. Costantini, L. Ravagnan et al., “NADH oxidase activity of mitochondrial apoptosis-inducing factor,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 16391–16398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Candé, N. Vahsen, D. Métivier et al., “Regulation of cytoplasmic stress granules by apoptosis-inducing factor,” Journal of Cell Science, vol. 117, no. 19, pp. 4461–4468, 2004. View at Publisher · View at Google Scholar
  28. J. M. Jones, P. Datta, S. M. Srinivasula et al., “Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice,” Nature, vol. 425, no. 6959, pp. 721–727, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Mammucari and R. Rizzuto, “Signaling pathways in mitochondrial dysfunction and aging,” Mechanisms of Ageing and Development, vol. 131, no. 7-8, pp. 536–543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Carmona-Gutierrez, T. Eisenberg, S. Büttner, C. Meisinger, G. Kroemer, and F. Madeo, “Apoptosis in yeast: triggers, pathways, subroutines,” Cell Death and Differentiation, vol. 17, no. 5, pp. 763–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Ludovico, F. Rodrigues, A. Almeida, M. T. Silva, A. Barrientos, and M. Côrte-Real, “Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 13, no. 8, pp. 2598–2606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Wissing, P. Ludovico, E. Herker et al., “An AIF orthologue regulates apoptosis in yeast,” Journal of Cell Biology, vol. 166, no. 7, pp. 969–974, 2004. View at Publisher · View at Google Scholar
  33. S. Büttner, D. Ruli, F. N. Vögtle et al., “A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis,” EMBO Journal, vol. 30, no. 14, pp. 2779–2792, 2011. View at Publisher · View at Google Scholar
  34. T. Eisenberg, S. Büttner, G. Kroemer, and F. Madeo, “The mitochondrial pathway in yeast apoptosis,” Apoptosis, vol. 12, no. 5, pp. 1011–1023, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. V. P. Skulachev, “Programmed death in yeast as adaptation?” FEBS Letters, vol. 528, pp. 23–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. F. F. Severin, M. V. Meer, E. A. Smirnova, D. A. Knorre, and V. P. Skulachev, “Natural causes of programmed death of yeast Saccharomyces cerevisiae,” Biochimica et Biophysica Acta, vol. 1783, no. 7, pp. 1350–1353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Váchová and Z. Palková, “Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia,” Journal of Cell Biology, vol. 169, no. 5, pp. 711–717, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Mitchell, G. H. Romano, B. Groisman et al., “Adaptive prediction of environmental changes by microorganisms,” Nature, vol. 460, no. 7252, pp. 220–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. W. Gourlay, W. Du, and K. R. Ayscough, “Apoptosis in yeast—mechanisms and benefits to a unicellular organism,” Molecular Microbiology, vol. 62, no. 6, pp. 1515–1521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Ludovico, M. J. Sousa, M. T. Silva, C. Leão, and M. Côrte-Real, “Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid,” Microbiology, vol. 147, no. 9, pp. 2409–2415, 2001. View at Google Scholar · View at Scopus
  41. S. Giannattasio, N. Guaragnella, and E. Marra, “Molecular mechanisms of programmed cell death Induced by acetic acid in Saccharomyces cerevisiae,” in Microbial Stress Tolerance for Biofuels, Microbiology Monographs, Z. L. Liu, Ed., vol. 22, pp. 75–75, Springer, Heidelberg, Germany, 2012. View at Google Scholar
  42. S. Giannattasio, N. Guaragnella, M. Corte-Real, S. Passarella, and E. Marra, “Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death,” Gene, vol. 354, no. 1-2, pp. 93–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Guaragnella, C. Pereira, M. J. Sousa et al., “YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity,” FEBS Letters, vol. 580, no. 30, pp. 6880–6884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Giannattasio, A. Atlante, L. Antonacci et al., “Cytochrome c is released from coupled mitochondria of yeast en route to acetic acid-induced programmed cell death and can work as an electron donor and a ROS scavenger,” FEBS Letters, vol. 582, no. 10, pp. 1519–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. G. F. Ribeiro, M. Côrte-Real, and B. Johansson, “Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock,” Molecular Biology of the Cell, vol. 17, no. 10, pp. 4584–4591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Guaragnella, L. Antonacci, S. Passarella, E. Marra, and S. Giannattasio, “Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death,” Folia Microbiologica, vol. 52, no. 3, pp. 237–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Guaragnella, S. Passarella, E. Marra, and S. Giannattasio, “Knock-out of metacaspase and/or cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast,” FEBS Letters, vol. 584, no. 16, pp. 3655–3660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Guaragnella, L. Antonacci, S. Giannattasio, E. Marra, and S. Passarella, “Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae,” FEBS Letters, vol. 582, no. 2, pp. 210–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Guaragnella, A. Bobba, S. Passarella, E. Marra, and S. Giannattasio, “Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1,” FEBS Letters, vol. 584, no. 1, pp. 224–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Guaragnella, S. Passarella, E. Marra, and S. Giannattasio, “Cytochrome c Trp65Ser substitution results in inhibition of acetic acid-induced programmed cell death in Saccharomyces cerevisiae,” Mitochondrion, vol. 11, no. 6, pp. 987–991, 2011. View at Publisher · View at Google Scholar
  51. A. G. Uren, K. O'Rourke, L. Aravind et al., “Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma,” Molecular Cell, vol. 6, no. 4, pp. 961–967, 2000. View at Google Scholar · View at Scopus
  52. F. Madeo, E. Herker, C. Maldener et al., “A caspase-related protease regulates apoptosis in yeast,” Molecular Cell, vol. 9, no. 4, pp. 911–917, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Tsiatsiani, F. van Breusegem, P. Gallois, A. Zavialov, E. Lam, and P. V. Bozhkov, “Metacaspases,” Cell Death and Differentiation, vol. 18, no. 8, pp. 1279–1288, 2011. View at Publisher · View at Google Scholar
  54. N. Guaragnella, L. Antonacci, S. Passarella, E. Marra, and S. Giannattasio, “Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways,” Biochemical Society Transactions, vol. 39, no. 5, pp. 1538–1543, 2011. View at Publisher · View at Google Scholar
  55. R. A. Butow and N. G. Avadhani, “Mitochondrial signaling: the retrograde response,” Molecular Cell, vol. 14, no. 1, pp. 1–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Liu and R. A. Butow, “Mitochondrial retrograde signaling,” Annual Review of Genetics, vol. 40, pp. 159–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Liao, W. C. Small, P. A. Srere, and R. A. Butow, “Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 11, no. 1, pp. 38–46, 1991. View at Google Scholar · View at Scopus
  58. Y. Jia, B. Rothermel, J. Thornton, and R. A. Butow, “A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus,” Molecular and Cellular Biology, vol. 17, no. 3, pp. 1110–1117, 1997. View at Google Scholar · View at Scopus
  59. T. Sekito, J. Thornton, and R. A. Butow, “Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p,” Molecular Biology of the Cell, vol. 11, no. 6, pp. 2103–2115, 2000. View at Google Scholar · View at Scopus
  60. E. V. Koonin, “Yeast protein controlling inter-organelle communication is related to bacterial phosphatases containing the Hsp70-type ATP-binding domain,” Trends in Biochemical Sciences, vol. 19, no. 4, pp. 156–157, 1994. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Liu, T. Sekito, M. Špírek, J. Thornton, and R. A. Butow, “Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p,” Molecular Cell, vol. 12, no. 2, pp. 401–411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Liu, M. Spírek, J. Thornton, and R. A. Butow, “A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1,” Molecular Biology of the Cell, vol. 16, no. 10, pp. 4893–4904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. J. J. Tate, K. H. Cox, R. Rai, and T. G. Cooper, “Mks1p is required for negative regulation of retrograde gene expression in Saccharomyces cerevisiae but does not affect nitrogen catabolite repression-sensitive gene expression,” Journal of Biological Chemistry, vol. 277, no. 23, pp. 20477–20482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Dilova, S. Aronova, J. C. Y. Chen, and T. Powers, “Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1p·Rtg3p-dependent target genes,” Journal of Biological Chemistry, vol. 279, no. 45, pp. 46527–46535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. G. P. H. van Heusden and H. Y. Steensma, “14-3-3 Proteins are essential for regulation of RTG3-dependent transcription in Saccharomyces cerevisiae,” Yeast, vol. 18, no. 16, pp. 1479–1491, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. Z. Liu, T. Sekito, C. B. Epstein, and R. A. Butow, “RTG-dependent mitochondria to nucleus signaling is negatively regulated by the seven WD-repeat protein Lst8p,” EMBO Journal, vol. 20, no. 24, pp. 7209–7219, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Chelstowska, Z. Liu, Y. Jia, D. Amberg, and R. A. Butow, “Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast,” Yeast, vol. 15, no. 13, pp. 1377–1391, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Liu and R. A. Butow, “A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function,” Molecular and Cellular Biology, vol. 19, no. 10, pp. 6720–6728, 1999. View at Google Scholar · View at Scopus
  69. X. Liao and R. A. Butow, “RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus,” Cell, vol. 72, no. 1, pp. 61–71, 1993. View at Publisher · View at Google Scholar · View at Scopus
  70. X. J. Chen, X. Wang, B. A. Kaufman, and R. A. Butow, “Aconitase couples metabolic regulation to mitochondrial DNA maintenance,” Science, vol. 307, no. 5710, pp. 714–717, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Guaragnella and R. A. Butow, “ATO3 Encoding a Putative Outward Ammonium Transporter Is an RTG-independent Retrograde Responsive Gene Regulated by GCN4 and the Ssy1-Ptr3-Ssy5 Amino Acid Sensor System,” Journal of Biological Chemistry, vol. 278, no. 46, pp. 45882–45887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Komeili, K. P. Wedaman, E. K. O'Shea, and T. Powers, “Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors,” Journal of Cell Biology, vol. 151, no. 4, pp. 863–878, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Giannattasio, Z. Liu, J. Thornton, and R. A. Butow, “Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression,” Journal of Biological Chemistry, vol. 280, no. 52, pp. 42528–42535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Journo, A. Mor, and H. Abeliovich, “Aup1-mediated regulation of Rtg3 during mitophagy,” Journal of Biological Chemistry, vol. 284, no. 51, pp. 35885–35895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. S. Jazwinsky, “Mitochondria, metabolism and aging in yeast,” in Model Systems in Aging, T. Nyström and H. D. Osiewacz, Eds., vol. 3, pp. 39–59, Springer, Heidelberg, Germany, 2003. View at Google Scholar
  76. V. Srinivasan, A. Kriete, A. Sacan, and S. M. Jazwinski, “Comparing the yeast retrograde response and NF-κB stress responses: implications for aging,” Aging Cell, vol. 9, no. 6, pp. 933–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. M. dos Santos, A. K. Gombert, B. Christensen, L. Olsson, and J. Nielsen, “Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates,” Eukaryotic Cell, vol. 2, no. 3, pp. 599–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Paiva, F. Devaux, S. Barbosa, C. Jacq, and M. Casal, “Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae,” Yeast, vol. 21, no. 3, pp. 201–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Vilela-Moura, D. Schuller, A. Mendes-Faia et al., “The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines,” Applied Microbiology and Biotechnology, vol. 89, no. 2, pp. 271–280, 2010. View at Publisher · View at Google Scholar
  80. F. Rolland, J. Winderickx, and J. M. Thevelein, “Glucose-sensing and -signalling mechanisms in yeast,” FEMS Yeast Research, vol. 2, no. 2, pp. 183–201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Casal, H. Cardoso, and C. Leão, “Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae,” Microbiology, vol. 142, no. 6, pp. 1385–1390, 1996. View at Google Scholar · View at Scopus
  82. M. Mollapour and P. W. Piper, “Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid,” Molecular and Cellular Biology, vol. 27, no. 18, pp. 6446–6456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. N. Arneborg, L. Jespersen, and M. Jakobsen, “Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid,” Archives of Microbiology, vol. 174, no. 1-2, pp. 125–128, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Yu, F. Wan, S. Dutta et al., “Autophagic programmed cell death by selective catalase degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4952–4957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Pereira, S. Chaves, S. Alves et al., “Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier,” Molecular Microbiology, vol. 76, no. 6, pp. 1398–1410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Mollapour, A. Shepherd, and P. W. Piper, “Novel stress responses facilitate Saccharomyces cerevisiae growth in the monocarboxylate preservatives,” Yeast, vol. 25, no. 3, pp. 169–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Almeida, S. Ohlmeier, A. J. Almeida et al., “Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway,” Proteomics, vol. 9, no. 3, pp. 720–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. W. C. Burhans and M. Weinberger, “Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes?” Cell Cycle, vol. 8, no. 14, pp. 2300–2302, 2009. View at Google Scholar · View at Scopus
  89. C. R. Burtner, C. J. Murakami, B. K. Kennedy, and M. Kaeberlein, “A molecular mechanism of chronological aging in yeast,” Cell Cycle, vol. 8, no. 8, pp. 1256–1270, 2009. View at Google Scholar · View at Scopus
  90. V. D. Longo, “The Ras and Sch9 pathways regulate stress resistance and longevity,” Experimental Gerontology, vol. 38, no. 7, pp. 807–811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Roosen, K. Engelen, K. Marchal et al., “PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability,” Molecular Microbiology, vol. 55, no. 3, pp. 862–880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Urban, A. Soulard, A. Huber et al., “Sch9 Is a major target of TORC1 in Saccharomyces cerevisiae,” Molecular Cell, vol. 26, no. 5, pp. 663–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Colombo, P. Ma, L. Cauwenberg et al., “Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae,” EMBO Journal, vol. 17, no. 12, pp. 3326–3341, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Lastauskiene and D. Citavicius, “nfluence of RAS genes on yeast Saccharomyces cerevisiae cell viability in acidic environment,” Biologija, vol. 54, pp. 150–155, 2008. View at Google Scholar
  95. J. E. Leadsham and C. W. Gourlay, “CAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation,” BMC Cell Biology, vol. 11, article 92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. P. S. Hammerman, C. J. Fox, and C. B. Thompson, “Beginnings of a signal-transduction pathway for bioenergetic control of cell survival,” Trends in Biochemical Sciences, vol. 29, no. 11, pp. 586–592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Szewczyk and L. Wojtczak, “Mitochondria as a pharmacological target,” Pharmacological Reviews, vol. 54, no. 1, pp. 101–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Ruckenstuhl, S. Büttner, D. Carmona-Gutierrez et al., “The warburg effect suppresses oxidative stress induced apoptosis yeast model for cancer,” PLoS One, vol. 4, no. 2, Article ID e4592, 2009. View at Publisher · View at Google Scholar
  99. R. Diaz-Ruiz, M. Rigoulet, and A. Devin, “The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression,” Biochimica et Biophysica Acta, vol. 1807, no. 6, pp. 568–576, 2010. View at Publisher · View at Google Scholar
  100. K. K. Singh, A. K. Rasmussen, and L. J. Rasmussen, “Genome-wide analysis of signal transducers and regulators of mitochondrial dysfunction in Saccharomyces cerevisiae,” Annals of the New York Academy of Sciences, vol. 1011, pp. 284–298, 2004. View at Publisher · View at Google Scholar · View at Scopus