Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 938482, 9 pages
http://dx.doi.org/10.1100/2012/938482
Research Article

Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)

1Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Received 6 June 2012; Accepted 4 July 2012

Academic Editors: A. Carmena, T. Darribere, and T. Kudoh

Copyright © 2012 M. Aminur Rahman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Schoppe, A Guide to Common Shallow Water Sea Stars, Sea Urchins, Sea Cucumbers and Feather Stars (Echinoderms) of the Philippines, Times Publishing Group, Singapore, 2000.
  2. A. Miskelly, Sea Urchins of and Indo-Pacific, Capricornica Publications, Sydney, Australia, 2002.
  3. L. W. H. Tan and P. K. L. Ng, A Guide to Seashore Life, The Singapore Science Centre, Singapore, 1988.
  4. E. Tortonese, “I caratteri biologicidel Mediterraneo orientale e i probleme relativi,” Attualita Zoologiche, vol. 7, pp. 207–251, 1951. View at Google Scholar
  5. M. Kaneniwa and T. Takagi, “Fatty acids in the lipid of food products from sea urchin,” Bulletin of the Japanese Society of Scientific Fisheries, vol. 52, no. 9, pp. 1681–1685, 1986. View at Google Scholar
  6. T. Oshima, S. Wada, and C. Koizumi, “Lipid deterioration of salted gonads of sea urchin during storage at 5°C,” Bulletin of the Japanese Society of Scientific Fisheries, vol. 52, no. 3, pp. 511–517, 1986. View at Google Scholar
  7. K. Ichihiro, Ed., Breeding, Processing and Sale, Hokkai Suisan Shinbunsha, Sappro, Japan, 1993.
  8. J. M. Lawrence, S. Olave, R. Otaiza, A. L. Lawrence, and E. Bustos, “Enhancement of gonad production in the sea urchin Loxechinus albus in Chile fed extruded feeds,” Journal of the World Aquaculture Society, vol. 28, no. 1, pp. 91–96, 1997. View at Google Scholar · View at Scopus
  9. M. I. Yur'eva, O. V. Lisakovskaya, V. N. Akulin, and A. V. Kropotov, “Gonads of sea urchins as the source of medication stimulating sexual behavior,” Russian Journal of Marine Biology, vol. 29, no. 3, pp. 189–193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Shimabukuro, “Tripneustes gratilla (sea urchin),” in Aquaculture in Tropical Areas, S. Shokita, K. Kakazu, A. Tomomi, T. Toma, and M. Yamaguchi, Eds., pp. 313–328, Midori Shobo, Tokyo, Japan, 1991. View at Google Scholar
  11. G. Q. Chen, W. Z. Xiang, C. C. Lau et al., “A comparative analysis of lipid and carotenoid composition of the gonads of Anthocidaris crassispina, Diadema setosum and Salmacis sphaeroides,” Food Chemistry, vol. 120, no. 4, pp. 973–977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Dincer and S. Cakli, “Chemical composition and biometrical measurements of the Turkish sea urchin (Paracentrotus lividus, Lamarck, 1816),” Critical Reviews in Food Science and Nutrition, vol. 47, no. 1, pp. 21–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Pulz and W. Gross, “Valuable products from biotechnology of microalgae,” Applied Microbiology and Biotechnology, vol. 65, no. 6, pp. 635–648, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Britton, S. Liaaen-Jensen, and H. Pfander, Carotenoids Handbook, Birkhäuser, Boston, Mass, USA, 2004.
  15. J. M. Lawrence, Edible Sea Urchins: Biology and Ecology, Elsevier, Boston, Mass, USA, 2007.
  16. N. L. Andrew, Y. Agatsuma, E. Ballesteros et al., “Status and management of world sea urchin fisheries,” Oceanogrraphy and Marine Biology Annual Review, vol. 40, pp. 343–425, 2002. View at Google Scholar
  17. N. L. Andrew, Y. Agatsuma, C. M. Dewees, and W. B. Stotz, “State of sea-urchin fisheries 2003,” in Sea Urchin Fisheries and Ecology, J. M. Lawrence and O. Guzmań, Eds., pp. 96–98, DEStech Publications, Lancaster, Pa, USA, 2004. View at Google Scholar
  18. J. M. Lawrence, A. L. Lawrence, S. C. McBride, S. B. George, S. A. Watts, and L. R. Plank, “Developments in the use of prepared feeds in sea-urchin aquaculture,” World Aquaculture, vol. 32, no. 3, pp. 34–39, 2001. View at Google Scholar
  19. S. M. Robinson, “The evolving role of aquaculture in the global production of sea urchins,” in Sea Urchin Fisheries and Ecology, J. M. Lawrence and O. Guzmań, Eds., pp. 343–357, DEStech Publications, Lancaster, Pa, USA, 2004. View at Google Scholar
  20. D. W. Klumpp, J. T. Salita-Espinosa, and M. D. Fortes, “Feeding ecology and trophic role of sea urchins in a tropical seagrass community,” Aquatic Botany, vol. 45, no. 2-3, pp. 205–229, 1993. View at Google Scholar · View at Scopus
  21. L. Yulin, “The echinoderm fauna of Hainan Island,” in Proceedings of the 3rd International Conference on the Marine Biology of the South China Sea, B. Morton, Ed., pp. 75–82, Hong Kong University Press, Hong Kong, China, 1998.
  22. D. J. W. Lane, L. M. Marsh, D. VandenSpiegel, and F. W. E. Rowe, “Echinoderm fauna of the South China Sea: an inventory and analysis of distribution patterns,” Raffles Bulletin of Zoology, vol. 48, no. 8, pp. 459–493, 2000. View at Google Scholar · View at Scopus
  23. M. Tsuchiya, M. Nishihira, S. Poung-In, and S. Choohabandit, “Feeding behavior of the urchin-eating urchin Salmacis sphaeroides,” Galaxea, vol. 11, pp. 149–153, 2009. View at Google Scholar
  24. M. A. Rahman, T. Uehara, and S. M. Rahman, “Effects of egg size on fertilization, fecundity and offspring performance: a comparative study between two sibling species of tropical sea urchins (genus Echinometra),” Pakistan Journal of Biological Sciences, vol. 5, no. 1, pp. 114–121, 2002. View at Google Scholar
  25. M. R. Rahman, M. A. Rahman, M. N. Khan, and M. G. Hussain, “Observation on the embryonic and larval development of silurid catfish, gulsa (Mystus cavasius),” Pakistan Journal of Biological Sciences, vol. 7, no. 6, pp. 1070–1075, 2004. View at Google Scholar
  26. M. A. Rahman, T. Uehara, and L. M. Aslan, “Comparative viability and growth of hybrids between two sympatric species of sea urchins (Genus echinometra) in Okinawa,” Aquaculture, vol. 183, no. 1-2, pp. 45–56, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Rahman, T. Uehara, and J. M. Lawrence, “Growth and heterosis of hybrids of two closely related species of Pacific sea urchins (genus Echinometra) in Okinawa,” Aquaculture, vol. 245, no. 1–4, pp. 121–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Rahman, T. Uehara, and J. S. Pearse, “Hybrids of two closely related tropical sea urchins (genus Echinometra): evidence against postzygotic isolating mechanisms,” Biological Bulletin, vol. 200, no. 2, pp. 97–106, 2001. View at Google Scholar · View at Scopus
  29. H. Fujisawa, “Temperature sensitivity of a hybrid between two species of sea urchin differing in thermotolerance,” Development Growth and Differentiation, vol. 35, no. 4, pp. 395–401, 1993. View at Google Scholar · View at Scopus
  30. M. A. Rahmani and T. Ueharai, “Induction of metamorphosis and substratum preference in four sympatric and closely related species of sea urchins (genus Echinometra) in Okinawa,” Zoological Studies, vol. 40, no. 1, pp. 29–43, 2001. View at Google Scholar · View at Scopus
  31. L. R. Mcedward, “Morphometric and metabolic analysis of the growth and form of an echinopluteus,” Journal of Experimental Marine Biology and Ecology, vol. 82, no. 2-3, pp. 259–287, 1984. View at Google Scholar · View at Scopus
  32. M. A, Haniffa, M. Nagarajan, K. Marimuthu, and A. J. Arockiaraj, “Embryonic and larval development of spotted murrel, Channa punctatus (Bloch),” Indian Journal of Fisheries, vol. 50, no. 3, pp. 355–362, 2003. View at Google Scholar
  33. R. B. Emlet, “Facultative planktotrophy in the tropical echinoid Clypeaster rosaceus (Linnaeus) and a comparison with obligate planktotrophy in Clypeaster subdepressus (Gray) (Clypeasteroida: Echinoidea),” Journal of Experimental Marine Biology and Ecology, vol. 95, no. 2, pp. 183–202, 1986. View at Google Scholar · View at Scopus
  34. M. F. Strathmann, Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast: Data and Methods For the Study of Eggs, Embryos, and Larvae, University of Washington Press, Seattle, Wash, USA, 1987.
  35. J. S. Pearse and R. A. Cameron, “Echinodermata: Echinoidea,” in Reproduction of Marine Invertebrates: Echinoderms and Lophophorates, A. C. Giese, J. S. Pearse, and V. B. Pearse, Eds., vol. 6, pp. 513–662, Boxwood Press, Pacific Grove, Calif, USA, 1991. View at Google Scholar
  36. G. A. Wray, “Echinoderms,” in Embryology: Constructing the Organism, S. F. Gilbert and A. M. Raunio, Eds., pp. 309–329, Sinauer Associates, Sunderland, Mass, USA, 1997. View at Google Scholar
  37. M. M. Thet, M. Noguchi, and I. Yazaki, “Larval and juvenile development of the echinometrid sea urchin Colobocentrotus mertensii: emergence of the peculiar form of spines,” Zoological Science, vol. 21, no. 3, pp. 265–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. B. C. Vellutini and A. E. Migotto, “Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida),” PloS One, vol. 5, no. 3, article e9654, 2010. View at Google Scholar · View at Scopus
  39. H. Takata and T. Kominami, “Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos,” Zoological Science, vol. 21, no. 10, pp. 1025–1035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. W. Caldwell, Development, metamorphosis, and substrate selection of the larvae of the sand dollar, Mellita quinquesperforata (Leske, 1778) [M.S. thesis], University of Florida, 1972.
  41. R. D. Burke, “Podial sensory receptors and the induction of metamorphosis in echinoids,” Journal of Experimental Marine Biology and Ecology, vol. 47, no. 3, pp. 223–234, 1980. View at Google Scholar · View at Scopus
  42. P. Gosselin and M. Jangoux, “From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida),” Zoomorphology, vol. 118, no. 1, pp. 31–43, 1998. View at Google Scholar · View at Scopus
  43. C. D. A. P. Nunes and M. Jangoux, “Larval growth and perimetamorphosis in the echinoid Echinocardium cordatum (Echinodermata): the spatangoid way to become a sea urchin,” Zoomorphology, vol. 126, no. 2, pp. 103–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. B. Emlet, “Larval form and metamorphosis of a “primitive” sea urchin, Eucidaris thouarsi(Echinodermata: Echinoidea Cidaroida), with implications for developmental and phylogenetic studies,” Biological Bulletin, vol. 174, no. 1, pp. 4–19, 1988. View at Google Scholar
  45. B. A. Miller and R. B. Emlet, “Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining age,” Journal of Experimental Marine Biology and Ecology, vol. 235, no. 1, pp. 67–90, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. R. T. Hinegardner, “Growth and development of the laboratory cultured sea urchin,” Biological Bulletin, vol. 137, no. 3, pp. 465–475, 1969. View at Google Scholar · View at Scopus
  47. J. E. Mazur and J. W. Miller, “A description of the complete metamorphosis of the sea urchin Lytechinus variegatus cultured in synthetic sea water,” The Ohio Journal of Science, vol. 71, no. 1, pp. 30–36, 1971. View at Google Scholar