Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 982594, 8 pages
http://dx.doi.org/10.1100/2012/982594
Research Article

Antioxidant Protection against Curative and Palliative Doses of Ionizing Irradiation in Human Blood Decreases with Aging

Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11 000 Belgrade, Serbia

Received 19 October 2011; Accepted 18 December 2011

Academic Editors: H. Acker and D. Matthopoulos

Copyright © 2012 Jelena Kasapović et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Spitz, E. I. Azzam, J. J. Li, and D. Gius, “Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology,” Cancer and Metastasis Reviews, vol. 23, no. 3-4, pp. 311–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. McCord, “The evolution of free radicals and oxidative stress,” The American Journal of Medicine, vol. 108, no. 8, pp. 652–659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C. K. K. Nair, D. K. Parida, and T. Nomura, “Radioprotectors in Radiotherapy,” Journal of Radiation Research, vol. 42, no. 1, pp. 21–37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. W. Epperly, C. Sikora, S. Defilippi et al., “Plasmid/liposome transfer of the human manganese superoxide dismutase transgene prevents ionizing irradiation-induced apoptosis in human esophagus organ explant culture,” International Journal of Cancer, vol. 90, no. 3, pp. 128–137, 2000. View at Publisher · View at Google Scholar
  5. E. M. Park, N. Ramnath, G. Y. Yang et al., “High superoxide dismutase and low glutathione peroxidase activities in red blood cells predict susceptibility of lung cancer patients to radiation pneumonitis,” Free Radical Biology and Medicine, vol. 42, no. 2, pp. 280–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. D. Bolzan, M. S. Bianchi, and N. O. Bianchi, “Correlation between antioxidant enzyme activities and the chromosome damage induced by radio- and chemotherapy in breast cancer patients,” Cancer Journal, vol. 6, no. 3, pp. 142–146, 1993. View at Google Scholar · View at Scopus
  7. S. B. Pajović, G. Joksić, J. Kasapović, S. Pejić, and D. T. Kanazir, “Role of antioxidant enzymes in radiosensitivity of human blood cells,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 19, no. 4, pp. 325–331, 2000. View at Google Scholar
  8. A. Bravard, A. Ageron-Blanc, S. Alvarez et al., “Correlation between antioxidant status, tumorigenicity and radiosensitivity in sister rat cell lines,” Carcinogenesis, vol. 23, no. 5, pp. 705–711, 2002. View at Google Scholar · View at Scopus
  9. A. Tulard, F. Hoffschir, F. H. de Boisferon, C. Luccioni, and A. Bravard, “Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity,” Free Radical Biology and Medicine, vol. 35, no. 1, pp. 68–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. C. Lee, D. W. Kim, K. Y. Jung et al., “Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line,” International Journal of Molecular Medicine, vol. 13, no. 6, pp. 883–887, 2004. View at Google Scholar · View at Scopus
  11. G. Joksic, S. B. Pajovic, M. Stankovic et al., “Chromosome aberrations, micronuclei, and activity of superoxide dismutases in human lymphocytes after irradiation in vitro,” Cellular and Molecular Life Sciences, vol. 57, no. 5, pp. 842–850, 2000. View at Publisher · View at Google Scholar
  12. S. Mehrotra, S. P. Jaiswar, U. Singh, R. Sachan, and A. A. Mahdi, “The effect of radiotherapy on oxidants and antioxidants in cervical neoplasia,” The Journal of Obstetrics & Ganecology of India, vol. 5, pp. 435–439, 2006. View at Google Scholar
  13. C. Borek, “Dietary antioxidants and human cancer,” Integrative Cancer Therapies, vol. 3, no. 4, pp. 333–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Droge, “Oxidative stress and aging,” in Hypoxia: Through the Lifecycle, R. C. Roach, Ed., pp. 191–200, Kluwer Academic/Plenum Publishers, New York, NY, USA, 2003. View at Google Scholar
  15. R. J. Mehlhorn, “Oxidants and antioxidants in aging,” in Physiological Basis of Aging and Geriatrics, P. S. Timiras, Ed., pp. 83–121, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2003. View at Google Scholar
  16. K. J. Lenton and C. L. Greenstock, “Ability of human plasma to protect against ionising radiation is inversely correlated with age,” Mechanisms of Ageing and Development, vol. 107, no. 1, pp. 15–20, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kasapović, S. Pejić, V. Stojiljković et al., “Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages after chemotherapy with 5-fluorouracil, doxorubicin and cyclophosphamide,” Clinical Biochemistry, vol. 43, no. 16-17, pp. 1287–1293, 2010. View at Publisher · View at Google Scholar
  18. S. Von Sonntag, “Polynucleotides and DNA,” in The Chemical Basis of Radiation Biology, M. Taylor and E. Francis, Eds., pp. 221–294, Taylor and Francis, London, UK, 1987. View at Google Scholar
  19. P. Rubin and G. W. Casarett, Clinical Radiation Pathology, W. B. Saunders, Philadelphia, Pa, USA, 1968.
  20. E. Beutler, Catalase. Red Cell Metabolism, A Manual of Biochemical Methods, Grune & Stratton, Orlando, Fla, USA, 3rd edition, 1982.
  21. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  22. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  23. D. C. Salo, S. W. Lin, R. E. Pacifici, and K. J. A. Davies, “Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide,” Free Radical Biology and Medicine, vol. 5, no. 5-6, pp. 335–339, 1988. View at Google Scholar · View at Scopus
  24. Y. Kono and I. Fridovich, “Superoxide radical inhibits catalase,” Journal of Biological Chemistry, vol. 257, no. 10, pp. 5751–5754, 1982. View at Google Scholar · View at Scopus
  25. G. K. Balendiran, R. Dabur, and D. Fraser, “The role of glutathione in cancer,” Cell Biochemistry and Function, vol. 22, no. 6, pp. 343–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Toborek and B. Hennig, “Fatty acid-mediated effects on the glutathione redox cycle in cultured endothelial cells,” The American Journal of Clinical Nutrition, vol. 59, no. 1, pp. 60–65, 1994. View at Google Scholar · View at Scopus
  27. A. H. Abou Ghalia and I. M. Fouad, “Glutathione and its metabolizing enzymes in patients with different benign and malignant diseases,” Clinical Biochemistry, vol. 33, no. 8, pp. 657–662, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Kasapović, S. Pejić, A. Todorović, V. Stojiljković, and S. B. Pajović, “Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages,” Cell Biochemistry and Function, vol. 26, no. 6, pp. 723–730, 2008. View at Publisher · View at Google Scholar
  29. J. Kasapović, S. Pejić, A. Todorović, V. Stojiljković, L. Radošević-Jelić, and S. B. Pajović, “Antioxidant status in breast cancer patients of different ages after radiotherapy,” Archives of Biological Sciences, vol. 61, no. 1, pp. 23–28, 2009. View at Publisher · View at Google Scholar
  30. H. R. Andersen, J. B. Nielsen, F. Nielsen, and P. Grandjean, “Antioxidative enzyme activities in human erythrocytes,” Clinical Chemistry, vol. 43, no. 4, pp. 562–568, 1997. View at Google Scholar · View at Scopus
  31. M. E. Inal, G. Kanbak, and E. Sunal, “Antioxidant enzyme activities and malondialdehyde levels related to aging,” Clinica Chimica Acta, vol. 305, no. 1-2, pp. 75–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Ozbay and H. Dulger, “Lipid peroxidation and antioxidant enzymes in Turkish population: relation to age, gender, exercise, and smoking,” Tohoku Journal of Experimental Medicine, vol. 197, no. 2, pp. 119–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. D. Bolzán, M. S. Bianchi, and N. O. Bianchi, “Superoxide dismutase, catalase and glutathione peroxidase activities in human blood: influence of sex, age and cigarette smoking,” Clinical Biochemistry, vol. 30, no. 6, pp. 449–454, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Guemouri, Y. Artur, B. Herbeth, C. Jeandel, G. Cuny, and G. Siest, “Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood,” Clinical Chemistry, vol. 37, no. 11, pp. 1932–1937, 1991. View at Google Scholar · View at Scopus
  35. R. S. Sohal and U. T. Brunk, “Mitochondrial production of pro-oxidants and cellular senescence,” Mutation Research, vol. 275, no. 3—6, pp. 295–304, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Arai, S. Maguchi, S. Fujii, H. Ishibashi, K. Oikawa, and N. Taniguchi, “Glycation and inactivation of human Cu-Zn-superoxide dismutase: identification of the in vitro glycated sites,” Journal of Biological Chemistry, vol. 262, no. 35, pp. 16969–16972, 1987. View at Google Scholar · View at Scopus
  37. W. Wasowicz, J. Kantorski, D. Perek, and S. Popadiuk, “Concentration of zinc and zinc-copper superoxide dismutase activity in red blood cells in normals and children with cancer,” Journal of Clinical Chemistry and Clinical Biochemistry, vol. 27, no. 7, pp. 413–418, 1989. View at Google Scholar · View at Scopus
  38. M. E. Inal, E. Sunal, and G. Kanbak, “Age-related changes in the glutathione redox system,” Cell Biochemistry and Function, vol. 20, no. 1, pp. 61–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Borek, “Antioxidants and radiation therapy,” Journal of Nutrition, vol. 134, no. 11, pp. 3207S–3209S, 2004. View at Google Scholar · View at Scopus
  40. R. S. Sohal, S. Agarwal, and B. H. Sohal, “Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus),” Mechanisms of Ageing and Development, vol. 81, no. 1, pp. 15–25, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. L. R. Coia and D. J. Moyland, Introduction to Clinical Radiation Oncology, Medical Physics Publishing, Madison, Wis, USA, 3rd edition, 1998.
  42. M. Adžić, A. Nićiforović, B. Zarić et al., “Cell culture conditions potentiate differences in the response to ionizing radiation of peripheral blood leukocytes isolated from breast cancer patients and healthy subjects,” Redox Report, vol. 11, pp. 39–44, 2008. View at Google Scholar
  43. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  44. Y. Miura, “Oxidative stress, radiation-adaptive responses, and aging,” Journal of Radiation Research, vol. 45, no. 3, pp. 357–372, 2004. View at Publisher · View at Google Scholar · View at Scopus