Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 141342, 8 pages
http://dx.doi.org/10.1155/2013/141342
Research Article

Numerical Laser Energy Deposition on Supersonic Cavity Flow and Sensor Placement Strategies to Control the Flow

Department of Mechanical Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No. 43, 06560 Ankara, Turkey

Received 13 August 2013; Accepted 26 September 2013

Academic Editors: Z.-H. Han and S. B. Leonov

Copyright © 2013 Ibrahim Yilmaz and Selin Aradag. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Aradag, CFD for High Speed Flows in Engineering, VDM Verlag Dr. Müller, Saarbrücken, Germany, 2008.
  2. E. Ayli, Numerical analysis of supersonic cavity flow [M.S. thesis], TOBB University of Economics and Technology, Ankara, Turkey, 2012.
  3. I. Yilmaz, E. Ayli, and S. Aradag, “A review of control methods for cavity flows and feasibility of laser energy deposition as an actuator,” International Journal of Flow Control, vol. 4, no. 1-2, pp. 29–46, 2012. View at Google Scholar
  4. R. G. Meyerand and A. F. Haught, “Gas breakdown at optical frequencies,” Physical Review Letters, vol. 11, no. 9, pp. 401–403, 1963. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Adelgren, G. Elliot, D. Knight, T. Buetner, M. Ivanov, and A. Zheltovodov, “Laser energy deposition in transverse wall jets and intersecting shocks,” in Proceedings of the 2nd Workshop on Thermochemical Process in Plasma Aerodynamics, St. Petersburg, Russia, September 2001.
  6. S. H. Zaidi, M. N. Shneider, D. K. Mansfield, Y. Z. Ionikh, and R. B. Miles, “Influence of upstream pulsed energy deposition on a shockwave structure in supersonic flow,” in Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA Paper No: 2002-2703, St. Louis, Mo, USA, 2002.
  7. H. Yan, R. Adelgren, G. Elliott et al., “Laser energy deposition in quiescent air and intersecting shocks,” in Proceedings of the 4th Workshop on Magneto-Plasma Aerodynamics for Aerospace Applications, pp. 68–77, IVTAN, Moscow, Russia, 2002.
  8. S. Aradag, H. Yan, and D. Knight, “The effects of laser energy deposition on supersonic cavity flow,” Journal of Thermal Science and Technology, vol. 29, no. 2, pp. 67–73, 2009. View at Google Scholar · View at Scopus
  9. I. Yilmaz and S. Aradag, “Effects of duration of laser energy deposition on supersonic cavities and sensor placement strategies for flow control,” in Proceedings of the 7th Ankara International Aerospace Conference, Ankara, Turkey, 2013.
  10. I. Yilmaz and S. Aradag, “An assessment of the effects of laser energy deposition for cavity flows,” International Journal of Materials, Mechanics and Manufacturing, vol. 1, no. 2, pp. 158–161, 2013. View at Google Scholar
  11. P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence and Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, New York, NY, USA, 1996.
  12. A. Chatterjee, “An introduction to the proper orthogonal decomposition,” Current Science, vol. 78, no. 7, pp. 808–817, 2000. View at Google Scholar · View at Scopus
  13. B. F. Feeny and R. Kappagantu, “On the physical interpretation of proper orthogonal modes in vibrations,” Journal of Sound and Vibration, vol. 211, no. 4, pp. 607–616, 1998. View at Google Scholar · View at Scopus
  14. C. W. Rowley, T. Colonius, and R. M. Murray, “POD based models of self-sustained oscillations in the flow past an open cavity,” in Proceedings of the 6th AIAA/CEAS Aeroacoustics Conference, AIAA Paper No. 2000-1969, June 2000.
  15. K. K. Nagarajan, L. Cordier, C. Airiau, and A. Kourta, “POD based reduced order modelling of a compressible forced cavity flow,” in Proceedings of the 19th French Congress on Mechanics, Marseille, France, 2009.
  16. T. Colonius, “An overview of simulation, modeling and active control of flow/acoustic resonance in open cavities,” in Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2001-0076, Reno, Nev, USA, 2001.
  17. C. Kasnakoglu, Reduced order modeling, nonlinear analysis and control methods for flow control problems [Ph.D. thesis], The Ohio State University, Columbus, Ohio, USA, 2007.
  18. I. Yilmaz, E. Ayli, and S. Aradag, “Reduced order modeling for supersonic cavity flows,” in Proceedings of the 10th WSEAS International Conference on Fluid Mechanics, pp. 107–112, Recent Researches in Mechanical Engineering, 2013.
  19. I. Yilmaz, E. Ayli, and S. Aradag, “Investigation of the effects of length to depth ratio on supersonic cavities using CFD and proper orthogonal decomposition,” The Scientific World Journal, vol. 2013, Article ID 810175, 12 pages, 2013. View at Publisher · View at Google Scholar
  20. K. Cohen, S. Siegel, and T. McLaughlin, “A heuristic approach to effective sensor placement for modeling of a cylinder wake,” Computers and Fluids, vol. 35, no. 1, pp. 103–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Paksoy, Developmet of numerical methods for flow control with the aid of artificial neural networks [M.S. thesis], TOBB University of Economics and Technology, Ankara, Turkey, 2011.