Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 146930, 3 pages
http://dx.doi.org/10.1155/2013/146930
Research Article

A New and Environmentally Friendly Route for Preparation of Carbon Microspheres from Wheat Straw

College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang 453003, China

Received 19 August 2013; Accepted 25 September 2013

Academic Editors: J. Assaad and J. Lee

Copyright © 2013 Chen Leishan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Mi, W. Hu, Y. Dan, and Y. Liu, “Synthesis of carbon micro-spheres by a glucose hydrothermal method,” Materials Letters, vol. 62, no. 8-9, pp. 1194–1196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Sun and Y. Li, “Ga2O3 and GaN semiconductor hollow spheres,” Angewandte Chemie, vol. 43, no. 29, pp. 3827–3831, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. S. Goh, K. T. Tan, K. T. Lee, and S. Bhatia, “Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia,” Bioresource Technology, vol. 101, no. 13, pp. 4834–4841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. H. Yu, X. J. Cui, L. L. Li et al., “From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization,” Advanced Materials, vol. 16, no. 18, pp. 1636–1640, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Hu, S.-H. Yu, K. Wang, L. Liu, and X.-W. Xu, “Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process,” Dalton Transactions, no. 40, pp. 5414–5423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M.-M. Titirici, A. Thomas, and M. Antonietti, “Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?” New Journal of Chemistry, vol. 31, no. 6, pp. 787–789, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. M. Titirici, A. Thomas, S.-H. Yu, J.-O. Müller, and M. Antonietti, “A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization,” Chemistry of Materials, vol. 19, no. 17, pp. 4205–4212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M.-M. Titirici, A. Thomas, and M. Antonietti, “Replication and coating of silica templates by hydrothermal carbonization,” Advanced Functional Materials, vol. 17, no. 6, pp. 1010–1018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Wang, Y. Guo, Y. Zhu et al., “A new route for preparation of hydrochars from rice husk,” Bioresource Technology, vol. 101, no. 24, pp. 9807–9810, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. R. T. Tarley and M. A. Z. Arruda, “Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents,” Chemosphere, vol. 54, no. 7, pp. 987–995, 2004. View at Publisher · View at Google Scholar · View at Scopus