Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 154375, 9 pages
Research Article

Development and Interpretation of New Sediment Rating Curve Considering the Effect of Vegetation Cover for Asian Basins

1Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8511, Japan
2College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China

Received 30 August 2013; Accepted 8 October 2013

Academic Editors: B. Uy and E. K. Zavadskas

Copyright © 2013 Jie Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Suspended sediment concentration of a river can provide very important perspective on erosion or soil loss of one river basin ecosystem. The changes of land use and land cover, such as deforestation or afforestation, affect sediment yield process of a catchment through changing the hydrological cycle of the area. A sediment rating curve can describe the average relation between discharge and suspended sediment concentration for a certain location. However, the sediment load of a river is likely to be undersimulated from water discharge using least squares regression of log-transformed variables and the sediment rating curve does not consider temporal changes of vegetation cover. The Normalized Difference Vegetation Index (NDVI) can well be used to analyze the status of the vegetation cover well. Thus long time monthly NDVI data was used to detect vegetation change in the past 19 years in this study. Then monthly suspended sediment concentration and discharge from 1988 to 2006 in Laichau station were used to develop one new sediment rating curve and were validated in other Asian basins. The new sediment model can describe the relationship among sediment yield, streamflow, and vegetation cover, which can be the basis for soil conservation and sustainable ecosystem management.