Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 160376, 7 pages
http://dx.doi.org/10.1155/2013/160376
Research Article

16S rRNA and Omp31 Gene Based Molecular Characterization of Field Strains of B. melitensis from Aborted Foetus of Goats in India

1College of Biotechnology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
2Animal Health Division, Central Institute for Research on Goats (CIRG), Makhdoom, Mathura 281001, India
3Department of Veterinary Microbiology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India

Received 23 August 2013; Accepted 30 September 2013

Academic Editors: A. Ludwig and A. M. Sahagún Prieto

Copyright © 2013 Ajay Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. G. Mantur and S. K. Amarnath, “Brucellosis in India—a review,” Journal of Biosciences, vol. 33, no. 4, pp. 539–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Manish, P. Chand, C. Rajesh, R. Teena, and K. Sunil, “Brucellosis: an updated review of the disease,” Indian Journal of Animal Sciences, vol. 83, no. 1, pp. 3–16, 2013. View at Google Scholar
  3. SCAHAW, the European’s Scientific Committee on Animal Health and Animal Welfare, “Brucellosis in sheep and Goats (Brucella melitensis),” A report of the Scientific Committee on Animal Health and Animal Welfare, European Commission, 2001.
  4. G. Pappas, P. Papadimitriou, N. Akritidis, L. Christou, and E. V. Tsianos, “The new global map of human brucellosis,” Lancet Infectious Diseases, vol. 6, no. 2, pp. 91–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Bounaadja, D. Albert, B. Chénais et al., “Real-time PCR for identification of Brucella spp.: a comparative study of IS711, bcsp31 and per target genes,” Veterinary Microbiology, vol. 137, no. 1-2, pp. 156–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Godfroid, A. Cloeckaert, J.-P. Liautard et al., “From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis,” Veterinary Research, vol. 36, no. 3, pp. 313–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. C. Scholz, Z. Hubalek, I. Sedláček et al., “Brucella microti sp. nov., isolated from the common vole Microtus arvalis,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 2, pp. 375–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. J. Bricker and S. M. Halling, “Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR,” Journal of Clinical Microbiology, vol. 32, no. 11, pp. 2660–2666, 1994. View at Google Scholar · View at Scopus
  9. W. J. Morgan, “The use of the thionin blue sensitivity test in the examination of Brucella,” Journal of General Microbiology, vol. 25, pp. 135–139, 1961. View at Google Scholar · View at Scopus
  10. M. J. Corbel and W. J. B. Morgan, “Genus Brucella Myeyer and Shaw 1920, 173 Al,” in Bergey's Manual of Systematic Bacteriology, J. G. Holt, Ed., vol. 1, pp. 377–388, Williams and Wilkins, Baltimore, Md, USA, 1984. View at Google Scholar
  11. S. Erdelling and A. Sen, “Isolation and biotyping of Brucella species in aborted sheep foetuses,” Pendik Veterinary Microbiology, vol. 31, pp. 31–42, 2000. View at Google Scholar
  12. J. A. Stack and A. P. MacMillan, Identification and Biotyping of Brucella Spp, FAO/WHO Collaborating Centre for Reference and Research on Brucellosis. Central Veterinary Laboratory, 2003.
  13. V. K. Gupta, D. K. Verma, P. K. Rout, S. V. Singh, and V. S. Vihan, “Polymerase chain reaction (PCR) for detection of Brucella melitensis in goat milk,” Small Ruminant Research, vol. 65, no. 1-2, pp. 79–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. K. Gupta, R. Kumari, D. K. Verma, K. Singh, S. V. Singh, and V. S. Vihan, “Detection of Brucella melitensis from goat tissues employing PCR,” Indian Journal of Animal Sciences, vol. 76, no. 10, pp. 793–795, 2006. View at Google Scholar · View at Scopus
  15. K. Dhama, S. Chakraborty, S. Kappor et al., “One world, one health-veterinary perspectives,” Advances in Animal and Veterinary Sciences, vol. 1, no. 1, pp. 5–13, 2013. View at Google Scholar
  16. S. V. Singh, N. Singh, M. P. Singh, H. Shankar, and D. D. Lalwani, “Occurrence of abortions and seroprevalence of brucellosis in goats and sheep,” Small Ruminant Research, vol. 14, no. 2, pp. 161–165, 1994. View at Google Scholar · View at Scopus
  17. P. Chaudhuri, R. Prasad, V. Kumar, and A. G. Basavarajappa, “Recombinant OMP28 antigen-based indirect ELISA for serodiagnosis of bovine brucellosis,” Molecular and Cellular Probes, vol. 24, no. 3, pp. 142–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. V. K. Gupta, P. K. Rout, and V. S. Vihan, “Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16M,” Research in Veterinary Science, vol. 82, no. 3, pp. 305–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. A. Bowden, S. M. Estein, M. S. Zygmunt, G. Dubray, and A. Cloeckaert, “Identification of protective outer membrane antigens of Brucella ovis by passive immunization of mice with monoclonal antibodies,” Microbes and Infection, vol. 2, no. 5, pp. 481–488, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Y. Kaltungo, S. N. A. Saidu, A. K. B. Sackey, and H. M. Kazeem, “Serological evidence of brucellosis in goats in Kaduna North Senatorial District of Kaduna State, Nigeria,” ISRN Veterinary Science, vol. 2013, Article ID 963673, 6 pages, 2013. View at Publisher · View at Google Scholar
  21. A. Kumar, N. C. Srivastava, and V. P. Singh, “Rapid identification of M. agalactiae and M. bovis by immuno binding assay,” Indian Journal of Comparative Microbiology Immunology and Infectious Diseases, vol. 23, no. 2, pp. 161–163, 2002. View at Google Scholar
  22. A. M. Whatmore, “Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1168–1184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. G. Alton, L. M. Jones, R. D. Angus, and J. M. Verger, Techniques for the Brucellosis Laboratory, Institute National de la Recherche Agronomique, Paris, France, 1988.
  24. B. J. Bricker, “Diagnostic strategies used for the identification of Brucella,” Veterinary Microbiology, vol. 90, no. 1-4, pp. 433–434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. B. A. Sowa, K. A. Kelly, T. A. Ficht, M. Frey, and L. G. Adams, “SDS-soluble and peptidoglycan-bound proteins in the outer membrane-peptidoglycan complex of Brucella abortus,” Veterinary Microbiology, vol. 27, no. 3-4, pp. 351–369, 1991. View at Google Scholar · View at Scopus
  26. A. Cloeckaert, H. S.-A. Debbarh, N. Vizcaíno, E. Saman, G. Dubray, and M. S. Zygmunt, “Cloning, nucleotide sequence, and expression of the Brucella melitensis bp26 gene coding for a protein immunogenic in infected sheep,” FEMS Microbiology Letters, vol. 140, no. 2-3, pp. 139–144, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. L. E. Lindler, T. L. Hadfield, B. D. Tall et al., “Cloning of a Brucella melitensis group 3 antigen gene encoding Omp28, a protein recognized by the humoral immune response during human brucellosis,” Infection and Immunity, vol. 64, no. 7, pp. 2490–2499, 1996. View at Google Scholar
  28. N. Vizcaíno, A. Cloeckaert, M. S. Zygmunt, and G. Dubray, “Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein,” Infection and Immunity, vol. 64, no. 9, pp. 3744–3751, 1996. View at Google Scholar · View at Scopus
  29. N. Vizcaíno, A. Cloeckaert, G. Dubray, and M. S. Zygmunt, “Cloning, nucleotide sequence, and expression of the gene coding for a ribosome releasing factor-homologous protein of Brucella melitensis,” Infection and Immunity, vol. 64, no. 11, pp. 4834–4837, 1996. View at Google Scholar · View at Scopus
  30. S. M. Estein, J. Cassataro, N. Vizcaíno, M. S. Zygmunt, A. Cloeckaert, and R. A. Bowden, “The recombinant Omp31 from Brucella melitensis alone or associated with rough lipopolysaccharide induces protection against Brucella ovis infection in BALB/c mice,” Microbes and Infection, vol. 5, no. 2, pp. 85–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Estein, P. C. Cheves, M. A. Fiorentino, J. Cassataro, F. A. Paolicchi, and R. A. Bowden, “Immunogenicity of recombinant Omp31 from Brucella melitensis in rams and serum bactericidal activity against B. ovis,” Veterinary Microbiology, vol. 102, no. 3-4, pp. 203–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. E. W. Koneman, S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn, “Brucella species,” in Diagnostic Microbiology, pp. 431–436, Lippincott, Philadelphia, Pa, USA, 5th edition, 1997. View at Google Scholar
  33. I. F. Huddleson, Brucella Infections in Animals and Man, Methods of Laboratory Diagnosis, New York, NY, USA, 1934.
  34. L. Herman and H. De Ridder, “Identification of Brucella spp. by using the polymerase chain reaction,” Applied and Environmental Microbiology, vol. 58, no. 6, pp. 2099–2101, 1992. View at Google Scholar · View at Scopus
  35. C. Romero, C. Gamazo, M. Pardo, and I. Lopez-Goni, “Specific detection of Brucella DNA by PCR,” Journal of Clinical Microbiology, vol. 33, no. 3, pp. 615–617, 1995. View at Google Scholar · View at Scopus
  36. W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenetic study,” Journal of Bacteriology, vol. 173, no. 2, pp. 697–703, 1991. View at Google Scholar · View at Scopus
  37. I. Erdogan, A. Gurel, C. Tekin, F. Uyanik, and A. Bitgel, “Tarkyabolgesindekoyun, kecivesigirlardabakeriyel abortlarintesbitivedagilimi,” Pendik Veterinary Microbiology, vol. 224, pp. 23–35, 1993. View at Google Scholar
  38. M. C. Casañas, M. I. Queipo-Ortuño, A. Rodriguez-Torres, A. Orduña, J. D. Colmenero, and P. Morata, “Specificity of a polymerase chain reaction assay of a target sequence on the 31-kilodalton Brucella antigen DNA used to diagnose human brucellosis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 20, no. 2, pp. 127–131, 2001. View at Google Scholar · View at Scopus
  39. M. Da Costa, J.-P. Guillou, B. Garin-Bastuji, M. Thiébaud, and G. Dubray, “Specificity of six gene sequences for the detection of the genus Brucella by DMA amplification,” Journal of Applied Bacteriology, vol. 81, no. 3, pp. 267–275, 1996. View at Google Scholar · View at Scopus
  40. A. Kumar, A. K. Verma, and A. Rahal, “Mycoplasma bovis, a multi disease producing pathogen: an overview,” Asian Journal of Animal and Veterinary Advances, vol. 6, no. 6, pp. 537–546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. W. B. Nilsson, R. N. Paranjype, A. DePaola, and M. S. Strom, “Sequence polymorphism of the 16S rRNA gene of Vibrio vulnificus is a possible indicator of strain virulence,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 442–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. C. T. Sacchi, A. M. Whitney, L. W. Mayer et al., “Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis,” Emerging Infectious Diseases, vol. 8, no. 10, pp. 1117–1123, 2002. View at Google Scholar · View at Scopus
  43. N. Vizcaíno, A. Cloeckaert, J.-M. Verger, M. Grayon, and L. Fernández-Lago, “DNA polymorphism in the genus Brucella,” Microbes and Infection, vol. 2, no. 9, pp. 1089–1100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. J. E. Gee, B. K. De, P. N. Levett, A. M. Whitney, R. T. Novak, and T. Popovic, “Use of 16S rRNA gene sequencing for rapid confirmatory identification of Brucella isolates,” Journal of Clinical Microbiology, vol. 42, no. 8, pp. 3649–3654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. W. S. Probert, K. N. Schrader, N. Y. Khuong, S. L. Bystrom, and M. H. Graves, “Real-time multiplex PCR assay for detection of Brucella spp., B. abortus, and B. melitensis,” Journal of Clinical Microbiology, vol. 42, no. 3, pp. 1290–1293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. G. M. Matar, I. A. Khneisser, and A. M. Abdelnoor, “Rapid laboratory confirmation of human brucellosis by PCR analysis of a target sequence on the 31-kilodalton Brucella antigen DNA,” Journal of Clinical Microbiology, vol. 34, no. 2, pp. 477–478, 1996. View at Google Scholar · View at Scopus
  47. M. I. Queipo-ortuño, P. Morata, P. Ocón, P. Manchado, and J. De Dios Colmenero, “Rapid diagnosis of human brucellosis by peripheral-blood PCR assay,” Journal of Clinical Microbiology, vol. 35, no. 11, pp. 2927–2930, 1997. View at Google Scholar · View at Scopus
  48. E. Navarro, M. A. Casao, and J. Solera, “Diagnosis of human brucellosis using PCR,” Expert Review of Molecular Diagnostics, vol. 4, no. 1, pp. 115–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. P. Ashrafzadeh, M. Y. Sabri, M. ZamriSaad, and B. SitiKhairani, “Identification, cloning, and sequencing of a 31-kilodalton Omp of Brucella melitensis,” EMBL/GenBank/DDBJ databases, 2009.
  50. N. Vizcaíno, A. Cloeckaert, M. S. Zygmunt, and L. Fernández-Lago, “Characterization of a Brucella species 25-kilobase DNA fragment deleted from Brucella abortus reveals a large gene cluster related to the synthesis of a polysaccharide,” Infection and Immunity, vol. 69, no. 11, pp. 6738–6748, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Vizcaíno, J.-M. Verger, M. Grayon, M. S. Zygmunt, and A. Cloeckaert, “DNA polymorphism at the omp-31 locus of Brucella spp.: Evidence for a large deletion in Brucella abortus, and other species-specific markers,” Microbiology, vol. 143, no. 9, pp. 2913–2921, 1997. View at Google Scholar · View at Scopus
  52. I. Salhi, R.-A. Boigegrain, J. Machold, C. Weise, A. Cloeckaert, and B. Rouot, “Characterization of new members of the group 3 outer membrane protein family of Brucella spp,” Infection and Immunity, vol. 71, no. 8, pp. 4326–4332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Cassataro, K. Pasquevich, L. Bruno, J. C. Wallach, C. A. Fossati, and P. C. Baldi, “Antibody reactivity to Omp31 from Brucella melitensis in human and animal infections by smooth and rough Brucellae,” Clinical and Diagnostic Laboratory Immunology, vol. 11, no. 1, pp. 111–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. J. Cutler, A. M. Whatmore, and N. J. Commander, “Brucellosis—new aspects of an old disease,” Journal of Applied Microbiology, vol. 98, no. 6, pp. 1270–1281, 2005. View at Publisher · View at Google Scholar · View at Scopus