Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 162384, 6 pages
http://dx.doi.org/10.1155/2013/162384
Research Article

The Influence of γ-Ray Irradiation on the Mechanical and Thermal Behaviors of nHA/PA66 Composite Scaffolds

Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China

Received 29 August 2013; Accepted 8 October 2013

Academic Editors: R. Adhikari and K. Ishikawa

Copyright © 2013 Fu You et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Wang, Y. Li, J. Wei, and K. De Groot, “Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites,” Biomaterials, vol. 23, no. 24, pp. 4787–4791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Liang, D. Jiang, and W. Ni, “Clinical observation on nano-hydroxyapatite and polyamide 66 composite in repairing bone defect due to benign bone tumor,” Chinese journal of reparative and reconstructive surgery, vol. 21, no. 8, pp. 785–788, 2007. View at Google Scholar · View at Scopus
  3. H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, and L. Cheng, “Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering,” Biomaterials, vol. 28, no. 22, pp. 3338–3348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. D. Ries, K. Weaver, R. M. Rose, J. Gunther, W. Sauer, and N. Beals, “Fatigue strength of polyethylene after sterilization by gamma irradiation or ethylene oxide,” Clinical Orthopaedics and Related Research, no. 333, pp. 87–95, 1996. View at Google Scholar · View at Scopus
  5. S. L. Lim, A. G. Fane, and C. J. D. Fell, “Radiation-induced grafting of regenerated cellulose hollow-fiber membranes,” Journal of Applied Polymer Science, vol. 41, no. 7-8, pp. 1609–1616, 1990. View at Google Scholar · View at Scopus
  6. H. Shintani, H. Kikuchi, and A. Nakamura, “Effects of gamma-ray irradiation on the change of characteristics of polyurethane,” Journal of Applied Polymer Science, vol. 41, no. 3-4, pp. 661–675, 1990. View at Google Scholar · View at Scopus
  7. X. Zhang, Y. Li, G. Lv, Y. Zuo, and Y. Mu, “Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites,” Polymer Degradation and Stability, vol. 91, no. 5, pp. 1202–1207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wang, Y. Zuo, Q. Zou et al., “Nano-hydroxyapatite/polyamide66 composite tissue-engineering scaffolds with anisotropy in morphology and mechanical behaviors,” Journal of Polymer Science, Part A, vol. 47, no. 3, pp. 658–669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Yubao, J. de Wijn, C. P. A. T. Klein, S. van de Meer, and K. de Groot, “Preparation and characterization of nanograde osteoapatite-like rod crystals,” Journal of Materials Science: Materials in Medicine, vol. 5, no. 5, pp. 252–255, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. P. X. Ma and R. J. Zhang, “Microtubular architecture of biodegradable polymer scaffolds,” Journal of Biomedical Materials Research, vol. 56, no. 4, pp. 469–477, 2001. View at Google Scholar
  11. L. M. Mathieu, T. L. Mueller, P.-E. Bourban, D. P. Pioletti, R. Müller, and J.-A. E. Månson, “Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 6, pp. 905–916, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. W. Starkweather Jr., P. Zoller, and G. A. Jones, “The heat of fusion of 66 nylon,” Journal of Polymer Science, vol. 22, no. 9, pp. 1615–1621, 1984. View at Google Scholar · View at Scopus
  13. A. Chaprio, “Radiation chemistry of polymer systems,” Radiation Research Supplement, vol. 4, pp. 179–191, 1962. View at Google Scholar
  14. J. Jachowicz, M. Kryszewski, and A. Sobol, “Thermal degradation of poly(2-methylphenylene oxide), poly(2,5-dimethylphenylene oxide) and poly(1,4-phenylene oxide),” Polymer, vol. 20, no. 8, pp. 995–1002, 1979. View at Google Scholar · View at Scopus
  15. R. L. Clough and S. W. Shalaby, Irradiation Effects on Polymers, 1991.
  16. J. W. T. Spinks and R. J. Woods, Introduction to Radiation Chemistry, Wiley, New York, NY, USA, 1990.
  17. D. W. Clegg, Irradiation Effects on Polymers, Elsevier, Oxford, UK, 1991.
  18. D. A. Baker, R. S. Hastings, and L. Pruitt, “Compression and tension fatigue resistance of medical grade ultra high molecular weight polyethylene: the effect of morphology, sterilization, aging and temperature,” Polymer, vol. 41, no. 2, pp. 795–808, 2000. View at Publisher · View at Google Scholar · View at Scopus