Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 194280, 15 pages
http://dx.doi.org/10.1155/2013/194280
Research Article

Formation Control of Robotic Swarm Using Bounded Artificial Forces

College of Information System and Management, National University of Defense Technology, Hunan, Changsha 410073, China

Received 7 September 2013; Accepted 20 October 2013

Academic Editors: S.-W. Lin and K.-C. Ying

Copyright © 2013 Long Qin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Xiang, B. Jouvencel, and O. Parodi, “Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection,” International Journal of Advanced Robotic Systems, vol. 7, no. 1, pp. 75–84, 2010. View at Google Scholar · View at Scopus
  2. B. Francesco, C. Jorge, and M. Sonia, Distributed Control of Robotic Networks. A Mathematical Approach to Motion Coordination Algorithms, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, USA, 2009.
  3. R. M. Murray, “Recent research in cooperative control of multivehicle systems,” Journal of Dynamic Systems, Measurement and Control, vol. 129, no. 5, pp. 571–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Earl and R. D'Andrea, “A decomposition approach to multi-vehicle cooperative control,” Robotics and Autonomous Systems, vol. 55, no. 4, pp. 276–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Wu, Y. Bai, and Z. Sun, “Research on formation of microsatellite communication with genetic algorithm,” The Scientific World Journal, vol. 2013, Article ID 509508, 7 pages, 2013. View at Publisher · View at Google Scholar
  6. B. Zhang and S. Song, “Robust attitude coordination control of formation flying spacecraft under control input saturation,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 7, pp. 4223–4235, 2011. View at Google Scholar · View at Scopus
  7. M. C. van Dyke and C. D. Hall, “Decentralized coordinated attitude control within a formation of spacecraft,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 5, pp. 1101–1109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Ren and R. W. Beard, “Formation feedback control for multiple spacecraft via virtual structures,” IEE Proceedings, vol. 151, no. 3, pp. 357–368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and G. J. Balas, “Decentralized receding horizon control and coordination of autonomous vehicle formations,” IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 19–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Roberti, J. M. Toibero, C. Soria, R. F. Vassallo, and R. Carelli, “Hybrid collaborative stereo vision system for mobile robots formation,” International Journal of Advanced Robotic Systems, vol. 6, no. 4, pp. 257–266, 2009. View at Google Scholar · View at Scopus
  11. T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot teams,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926–939, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Monteiro and E. Bicho, “A dynamical systems approach to behavior-based formation control,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2606–2611, Washington, DC, USA, May 2002. View at Scopus
  13. J. R. T. Lawton, R. W. Beard, and B. J. Young, “A decentralized approach to formation maneuvers,” IEEE Transactions on Robotics and Automation, vol. 19, no. 6, pp. 933–941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Cao, Y. Bai, and H. Liu, “Distributed rigid formation control algorithm for multi-agent systems,” Kybernetes, vol. 41, no. 10, pp. 1650–1661, 2012. View at Publisher · View at Google Scholar
  15. B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx, “Rigid graph control architectures for autonomous formations,” IEEE Control Systems Magazine, vol. 28, no. 6, pp. 48–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. W. Ekanayake and P. N. Pathirana, “Formations of robotic swarm: an artificial force based approach,” International Journal of Advanced Robotic Systems, vol. 7, no. 3, pp. 173–190, 2010. View at Google Scholar · View at Scopus
  17. K. Hengster-Movrić, S. Bogdan, and I. Draganjac, “Multi-agent formation control based on bell-shaped potential functions,” Journal of Intelligent and Robotic Systems, vol. 58, no. 2, pp. 165–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Liu, T. Chu, L. Wang, and G. Xie, “Controllability of a leader-follower dynamic network with switching topology,” IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1009–1013, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. V.-H. Tran and S.-G. Lee, “A stable formation control using approximation of translational and angular accelerations,” International Journal of Advanced Robotic Systems, vol. 8, no. 1, pp. 65–75, 2011. View at Google Scholar · View at Scopus
  20. G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman, “Decentralized control of vehicle formations,” Systems and Control Letters, vol. 54, no. 9, pp. 899–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Luo, S. Li, and X. Guan, “Decentralised control for formation reorganisation of multi-agent systems using a virtual leader,” International Journal of Systems Science, vol. 42, no. 1, pp. 171–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Sabattini, C. Secchi, and C. Fantuzzi, “Potential based control strategy for arbitrary shape formations of mobile robots,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '09), pp. 3762–3767, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Cao, Y. Bai, and H. Liu, “Distributed rigid formation control algorithm for multi-agent systems,” Kybernetes, vol. 41, no. 10, pp. 1650–1661, 2012. View at Publisher · View at Google Scholar
  24. Y. Zhang, P. Agarwal, V. Bhatnagar, S. Balochian, and J. Yan, “Swarm intelligence and its applications,” The Scientific World Journal, vol. 2013, Article ID 528069, 3 pages, 2013. View at Publisher · View at Google Scholar
  25. S. W. Ekanayake and P. N. Pathirana, “Artificial formation forces for stable aggregation of multi-agent system,” in Proceedings of the 2nd International Conference on Information and Automation (ICIA '06), pp. 129–134, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. W. Ekanayake and P. N. Pathirana, “Smart cluster bombs—control of multi-agent systems for military applications,” in Proceedings of the IEEE International Conference on Networking, Sensing and Control (ICNSC '07), pp. 471–476, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. W. Ekanayake and P. N. Pathirana, “Two stage architecture for navigating multiple guided weapons into a widespread target,” in Proceedings of the IEEE Aerospace Conference (AC '08), pp. 1–20, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. B. M. Elgindi and R. W. Langer, “On the numerical solution of perturbed bifurcation problems,” International Journal of Mathematics and Mathematical Sciences, vol. 18, no. 3, pp. 561–570, 1995. View at Publisher · View at Google Scholar
  29. M. Hermann, W. Middlemann, and F. Schiller, Numerical Analysis of Perturbed Bifurcation Problems, Springer, New York, NY, USA, 1998.
  30. J. Lãsalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Academic Press, London, UK, 1967.
  31. C. Chen and P. Richardson, “Mobile robot obstacle avoidance using short memory: a dynamic recurrent neuro-fuzzy approach,” Transactions of the Institute of Measurement and Control, vol. 34, no. 2-3, pp. 148–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Hattori, E. Ono, and S. Hosoe, “Optimum vehicle trajectory control for obstacle avoidance problem,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 5, pp. 507–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Yang, Z. Liu, H. Chen, and R. Pei, “Robust tracking control of mobile robot formation with obstacle avoidance,” Journal of Control Science and Engineering, vol. 2007, Article ID 51841, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C.-L. Hwang and L.-J. Chang, “Trajectory tracking and obstacle avoidance of car-like mobile robots in an intelligent space using mixed H2/H decentralized control,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 3, pp. 345–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. de la Cruz and R. Carelli, “Dynamic model based formation control and obstacle avoidance of multi-robot systems,” Robotica, vol. 26, no. 3, pp. 345–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Qing-Xiao, Y. Can, F. Zhuang, and Z. Yan-Zheng, “Research of the localization of restaurant service robot,” International Journal of Advanced Robotic Systems, vol. 7, no. 3, pp. 227–238, 2010. View at Google Scholar · View at Scopus
  37. W. Budiharto, D. Purwanto, and A. Jazidie, “A robust obstacle avoidance for service robot using Bayesian approach,” International Journal of Advanced Robotic Systems, vol. 8, no. 1, pp. 37–44, 2011. View at Google Scholar · View at Scopus
  38. L. C. A. Pimenta, G. A. S. Pereira, N. Michael et al., “Swarm coordination based on smoothed particle hydrodynamics technique,” IEEE Transactions on Robotics, vol. 29, no. 2, pp. 383–399, 2013. View at Publisher · View at Google Scholar
  39. M.-Y. A. Hsieh and V. Kumar, “Pattern generation with multiple robots,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '06), pp. 2442–2447, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. S. Marcolino and L. Chaimowicz, “No robot left behind: coordination to overcome local minima in swarm navigation,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 1904–1909, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Barraquand and J.-C. Latombe, “Robot motion planning: a distributed representation approach,” International Journal of Robotics Research, vol. 10, no. 6, pp. 628–649, 1991. View at Google Scholar · View at Scopus