Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 230471, 7 pages
http://dx.doi.org/10.1155/2013/230471
Research Article

Approximate Single-Diode Photovoltaic Model for Efficient I-V Characteristics Estimation

1Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool L69 3BX, UK
2Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Jiangsu, Suzhou 215123, China

Received 23 August 2013; Accepted 11 September 2013

Academic Editors: L. Donetti and J. F. Paris

Copyright © 2013 Jieming Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ma, T. O. Ting, K. L. Man, N. Zhang, S. U. Guan, and P. W. H. Wong, “Parameter estimation of photovoltaic models via cuckoo search,” Journal of Applied Mathematics, vol. 2013, Article ID 362619, 8 pages, 2013. View at Publisher · View at Google Scholar
  2. A. Orioli and A. Di Gangi, “A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data,” Applied Energy, vol. 102, pp. 1160–1177, 2013. View at Publisher · View at Google Scholar
  3. R. L. Y. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in P-N junctions and P-N junction characteristics,” Proceedings of the IRE, vol. 45, no. 9, pp. 1228–1243, 1957. View at Publisher · View at Google Scholar
  4. K. Nishioka, N. Sakitani, Y. Uraoka, and T. Fuyuki, “Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration,” Solar Energy Materials and Solar Cells, vol. 91, no. 13, pp. 1222–1227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. PSIM Users Guide, Powersim Inc., 2010.
  6. User's Guide PVsyst Contextual Help, PVsyst SA, 2012.
  7. T. Tafticht and K. Agbossou, “Development of a mppt method for photo-voltaic systems,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 1123–1126, May 2004. View at Scopus
  8. M. H. Moradi and A. R. Reisi, “A hybrid maximum power point tracking method for photovoltaic systems,” Solar Energy, vol. 85, no. 11, pp. 2965–2976, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. V. Hartmann, M. A. Vitorino, M. B. R. Correa, and A. M. N. Lima, “Combining model-based and heuristic techniques for fast tracking the maximum-power point of photovoltaic systems,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2875–2885, 2013. View at Publisher · View at Google Scholar
  10. G. Walker, “Evaluating MPPT converter topologies using a matlab PV model,” Journal of Electrical and Electronics Engineering, vol. 21, no. 1, pp. 49–55, 2001. View at Google Scholar · View at Scopus
  11. M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, “Maximum power point tracking of multiple photovoltaic arrays: a PSO approach,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 1, pp. 367–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. L. R. Chen, C. H. Tsai, Y. L. Lin, and Y. S. Lai, “A biological swarm chasing algorithm for tracking the PV maximum power point,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 484–493, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Nguyen and B. Lehman, “An adaptive solar photovoltaic array using model-based reconfiguration algorithm,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2644–2654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Xiao, M. G. J. Lind, W. G. Dunford, and A. Capel, “Real-time identification of optimal operating points in photovoltaic power systems,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1017–1026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Ma, K. L. Man, T. O. Ting, N. Zhang, C. U. Lei, and N. Wong, “A hybrid mppt method for photovoltaic systems via estimation and revision method,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '13), pp. 241–244, Beijing, China, May 2013. View at Publisher · View at Google Scholar
  16. J. Ma, K. L. Man, T. O. Ting, N. Zhang, C. U. Lei, and N. Wong, “Low-cost global mppt scheme for photovoltaic systems under partially shaded conditions,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '13), pp. 245–248, Beijing, China, 2013. View at Publisher · View at Google Scholar
  17. Y. Mahmoud, W. Xiao, and H. H. Zeineldin, “A simple approach to modeling and simulation of photovoltaic modules,” IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 185–186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Jain, S. Sharma, and A. Kapoor, “Solar cell array parameters using Lambert W-function,” Solar Energy Materials and Solar Cells, vol. 90, no. 1, pp. 25–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Jain and A. Kapoor, “Exact analytical solutions of the parameters of real solar cells using Lambert W-function,” Solar Energy Materials and Solar Cells, vol. 81, no. 2, pp. 269–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Jung and S. Ahmed, “Real-time simulation model development of single crystalline photovoltaic panels using fast computation methods,” Solar Energy, vol. 86, no. 6, pp. 1826–1837, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Castaner and S. Silvestre, Modelling Photovoltaic Systems Using PSpice, John Wiley & Sons, New York, NY, USA, 2002.
  23. C. Moler, Numerical Computing with MATLAB, SIAM, Philadelphia, Pa, USA, 2004.
  24. R. L. Burden and J. D. Faires, Numerical Analysis, Cengage Learning, 2010.
  25. W. de Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, pp. 78–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Ishaque, Z. Salam, and H. Taheri, “Simple, fast and accurate two-diode model for photovoltaic modules,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 586–594, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Peng, Y. Sun, Z. Meng, Y. Wang, and Y. Xu, “A new method for determining the characteristics of solar cells,” Journal of Power Sources, vol. 227, pp. 131–136, 2013. View at Publisher · View at Google Scholar
  28. W. Y. Yang, W. C. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB, John Wiley & Sons, New York, NY, USA, 2005.