Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 268673, 15 pages
http://dx.doi.org/10.1155/2013/268673
Research Article

Mathematical Identification of Influential Parameters on the Elastic Buckling of Variable Geometry Plate

1Faculty of Mechanical and Civil Engineering Kraljevo, University of Kragujevac, 36000 Kraljevo, Serbia
2Faculty of Technical Sciences Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
3Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia

Received 7 August 2013; Accepted 16 September 2013

Academic Editors: O. D. Makinde and J. Meseguer

Copyright © 2013 Mirko Djelosevic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, New York, NY, USA, 1959.
  2. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill Book Company, New York, NY, USA, 1961.
  3. H. G. Allen and P. S. Bulson, Background To Buckling, McGraw-Hill, London, UK, 1980.
  4. K. H. Gerstle, Basic Structural Design, McGraw-Hill Book Company, New York, NY, USA, 1967.
  5. V. Radosavljević and M. Dražić, “Exact solution for buckling of FCFC stepped rectangular plates,” Applied Mathematical Modelling, vol. 34, no. 12, pp. 3841–3849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. John Wilson and S. Rajasekaran, “Elastic stability of all edges simply supported, stepped and stiffened rectangular plate under uniaxial loading,” Applied Mathematical Modelling, vol. 36, no. 12, pp. 5758–5772, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Paik and A. K. Thayamballi, “Buckling strength of steel plating with elastically restrained edges,” Thin-Walled Structures, vol. 37, no. 1, pp. 27–55, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Zhong, C. Pan, and H. Yu, “Buckling analysis of shear deformable plates using the quadrature element method,” Applied Mathematical Modelling, vol. 35, no. 10, pp. 5059–5074, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Azhari, A. R. Shahidi, and M. M. Saadatpour, “Local and post local buckling of stepped and perforated thin plates,” Applied Mathematical Modelling, vol. 29, no. 7, pp. 633–652, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Petrišič, F. Kosel, and B. Bremec, “Buckling of plates with strengthenings,” Thin-Walled Structures, vol. 44, no. 3, pp. 334–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. O. K. Bedair and A. N. Sherbourne, “Plate/stiffener assemblies under nonuniform edge compression,” Journal of Structural Engineering, vol. 121, no. 11, pp. 1603–1612, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Mizusawa, T. Kajita, and M. Naruoka, “Vibration and buckling analysis of plates of abruptly varying stiffness,” Computers and Structures, vol. 12, no. 5, pp. 689–693, 1980. View at Publisher · View at Google Scholar · View at Scopus
  13. J. P. Singh and S. S. Dey, “Variational finite difference approach to buckling of plates of variable stiffness,” Computers and Structures, vol. 36, no. 1, pp. 39–45, 1990. View at Google Scholar · View at Scopus
  14. A. B. Sabir and F. Y. Chow, “Elastic buckling of flat panels containing circular and square holes,” in Proceedings of the International Conference on Instability and Plastic Collapse of Steel Structures, L. J. Morris, Ed., pp. 311–321, Granada Publishing, London, UK, 1983.
  15. C. J. Brown and A. L. Yettram, “The elastic stability of square perforated plates under combinations of bending, shear and direct load,” Thin-Walled Structures, vol. 4, no. 3, pp. 239–246, 1986. View at Google Scholar · View at Scopus
  16. C. J. Brown, A. L. Yettram, and M. Burnett, “Stability of plates with rectangular holes,” Journal of Structural Engineering, vol. 113, no. 5, pp. 1111–1116, 1987. View at Google Scholar · View at Scopus
  17. C. J. Brown, “Elastic buckling of perforated plates subjected to concentrated loads,” Computers and Structures, vol. 36, no. 6, pp. 1103–1109, 1990. View at Google Scholar · View at Scopus
  18. E. Maiorana, C. Pellegrino, and C. Modena, “Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment,” Thin-Walled Structures, vol. 47, no. 3, pp. 241–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. I. E. Harik and M. G. Andrade, “Stability of plates with step variation in thickness,” Computers and Structures, vol. 33, no. 1, pp. 257–263, 1989. View at Google Scholar · View at Scopus
  20. H. C. Bui, “Buckling analysis of thin-walled sections under general loading conditions,” Thin-Walled Structures, vol. 47, no. 6-7, pp. 730–739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. J. Brown and A. L. Yettram, “Factors influencing the elastic stability of orthotropic plates containing a rectangular cut-out,” Journal of Strain Analysis for Engineering Design, vol. 35, no. 6, pp. 445–458, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. K. M. El-Sawy and A. S. Nazmy, “Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes,” Thin-Walled Structures, vol. 39, no. 12, pp. 983–998, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. D. Moen and B. W. Schafer, “Elastic buckling of thin plates with holes in compression or bending,” Thin-Walled Structures, vol. 47, no. 12, pp. 1597–1607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. R. Rahai, M. M. Alinia, and S. Kazemi, “Buckling analysis of stepped plates using modified buckling mode shapes,” Thin-Walled Structures, vol. 46, no. 5, pp. 484–493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. N. E. Shanmugam, V. T. Lian, and V. Thevendran, “Finite element modelling of plate girders with web openings,” Thin-Walled Structures, vol. 40, no. 5, pp. 443–464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Bradford and M. Azhari, “Buckling of plates with different end conditions using the finite strip method,” Computers and Structures, vol. 56, no. 1, pp. 75–83, 1995. View at Google Scholar · View at Scopus
  27. S. C. W. Lau and G. J. Hancock, “Buckling of thin flat-walled structures by a spline finite strip method,” Thin-Walled Structures, vol. 4, no. 4, pp. 269–294, 1986. View at Google Scholar · View at Scopus
  28. Y. K. Cheung, F. T. K. Au, and D. Y. Zheng, “Finite strip method for the free vibration and buckling analysis of plates with abrupt changes in thickness and complex support conditions,” Thin-Walled Structures, vol. 36, no. 2, pp. 89–110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Bisagni and R. Vescovini, “Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels,” Thin-Walled Structures, vol. 47, no. 3, pp. 318–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. D. G. Stamatelos, G. N. Labeas, and K. I. Tserpes, “Analytical calculation of local buckling and post-buckling behavior of isotropic and orthotropic stiffened panels,” Thin-Walled Structures, vol. 49, no. 3, pp. 422–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Djelosevic, V. Gajic, D. Petrovic, and M. Bizic, “Identification of local stress parameters influencing the optimum design of box girders,” Engineering Structures, vol. 40, pp. 299–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Djelosevic, I. Tanackov, M. Kostelac, V. Gajic, and J. Tepic, “Modeling elastic stability of a pressed box girder flange,” Applied Mechanics and Materials, vol. 343, pp. 35–41, 2013. View at Google Scholar