Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 278071, 7 pages
http://dx.doi.org/10.1155/2013/278071
Research Article

Antioxidative and Anticholinesterase Activity of Cyphomandra betacea Fruit

Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah (UMS), Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

Received 24 May 2013; Accepted 9 September 2013

Academic Editors: O. I. Aruoma and A. Ferrante

Copyright © 2013 Siti Hawa Ali Hassan and Mohd Fadzelly Abu Bakar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Uchida, “Role of reactive aldehyde in cardiovascular diseases,” Free Radical Biology and Medicine, vol. 28, no. 12, pp. 1685–1696, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Y. Lim and J. Murtijaya, “Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods,” LWT-Food Science and Technology, vol. 40, no. 9, pp. 1664–1669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. L. Madsen and G. Bertelsen, “Spices as antioxidants,” Trends in Food Science and Technology, vol. 6, no. 8, pp. 271–277, 1995. View at Google Scholar · View at Scopus
  4. L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian, “Free radical scavenging properties of wheat extracts,” Journal of Agricultural and Food Chemistry, vol. 50, no. 6, pp. 1619–1624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Qi, B. R. Amy, W. Yougui, C. J. James, and B. L. Eric, “Fruit and vegetable juices and Alzheimer's disease: the kame project,” American Journal of Medicine, vol. 119, no. 9, pp. 751–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998. View at Google Scholar · View at Scopus
  7. V. Dewanto, X. Wu, K. K. Adom, and R. H. Liu, “Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity,” Journal of Agricultural and Food Chemistry, vol. 50, no. 10, pp. 3010–3014, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Giusti and R. E. Wrolstad, “Characterization and measurement of anthocyanins by UV-visible spectroscopy,” in Current Protocols in Food Analytical Chemistry, R. E. Wrolstad, Ed., vol. 2, pp. 143–167, 2001. View at Google Scholar
  9. D. Hess, H. E. Keller, B. Oberlin, R. Bonfanti, and W. Schüep, “Simultaneous determination of retinol, tocopherols, carotenes and lycopene in plasma by means of high-performance liquid chromatography on reversed phase,” International Journal for Vitamin and Nutrition Research, vol. 61, no. 3, pp. 232–238, 1991. View at Google Scholar · View at Scopus
  10. L. M. Magalhães, M. A. Segundo, S. Reis, and J. L. F. C. Lima, “Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay,” Analytica Chimica Acta, vol. 558, no. 1-2, pp. 310–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. Atta-ur-Rahman, M. I. Choudary, and W. J. Thomsen, “Bioassay techniques for drug development,” Harwood Academic Publishers, vol. 2, pp. 142–143, 2005. View at Google Scholar
  14. C. Mertz, A.-L. Gancel, Z. Gunata et al., “Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits,” Journal of Food Composition and Analysis, vol. 22, no. 5, pp. 381–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Ghosal and P. Mandal, “Phytochemical screening and antioxidant activities of two selected “BIHI” fruits used as vegetables in Darjeeling Himalaya,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 567–574, 2012. View at Google Scholar · View at Scopus
  16. G. Mezza and E. Maniati, “Anthocyanins,” in Fruits, Vegetables & Grains, pp. 92–97, CRC Press, Boca Raton, Fla, USA, 1993. View at Google Scholar
  17. R. E. Wrolstad and D. A. Heatherbell, “Identification of anthocyanins and distribution of flavonoids in tamarillo fruit (Cyphomandra betaceae (Cav.) Sendt.),” Journal of the Science of Food and Agriculture, vol. 25, no. 10, pp. 1221–1228, 1974. View at Google Scholar · View at Scopus
  18. D. B. Rodriguez-Amaya, P. A. Bobbio, and F. O. Bobbio, “Carotenoid composition and vitamin A value of the brasilian fruit Cyphomandra betacea,” Food Chemistry, vol. 12, no. 1, pp. 61–65, 1983. View at Google Scholar · View at Scopus
  19. J. A. Olson, “Carotenoids and human health,” Archivos Latinoamericanos de Nutricion, vol. 49, no. 3, pp. 7–11, 1999. View at Google Scholar · View at Scopus
  20. A. Azrina, M. N. Nurul Nadiah, and I. Amin, “Antioxidant properties of methanolic extract of Canarium odontophyllum fruit,” International Food Research Journal, vol. 17, no. 2, pp. 319–326, 2010. View at Google Scholar · View at Scopus
  21. S. N. Dawes and M. E. Callaghen, “Composition of New Zealand fruit tamarillo (Cyphomandra betacea),” New Zealand Journal of Science, vol. 13, pp. 447–451, 1970. View at Google Scholar
  22. B. George, C. Kaur, D. S. Khurdiya, and H. C. Kapoor, “Antioxidants in tomato (Lycopersium esculentum) as a function of genotype,” Food Chemistry, vol. 84, no. 1, pp. 45–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Scalfi, V. Fogliano, A. Pentangelo, G. Graziani, I. Giordano, and A. Ritieni, “Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes,” Journal of Agricultural and Food Chemistry, vol. 48, no. 4, pp. 1363–1366, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. M. F. Abu Bakar, M. Mohamed, A. Rahmat, and J. Fry, “Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus),” Food Chemistry, vol. 113, no. 2, pp. 479–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Vasco, J. Ruales, and A. Kamal-Eldin, “Total phenolic compounds and antioxidant capacities of major fruits from Ecuador,” Food Chemistry, vol. 111, no. 4, pp. 816–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Szwajgier and K. Borowiec, “Screening for acetylcholinesterase inhibitors in selected fruits and vegetables,” Electronic Journal Polish Agricultural Universities, vol. 15, no. 2, pp. 1–6.
  27. W. Kalt, C. F. Forney, A. Martin, and R. L. Prior, “Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits,” Journal of Agricultural and Food Chemistry, vol. 47, no. 11, pp. 4638–4644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Ferreira, C. Proença, M. L. M. Serralheiro, and M. E. M. Araújo, “The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal,” Journal of Ethnopharmacology, vol. 108, no. 1, pp. 31–37, 2006. View at Publisher · View at Google Scholar · View at Scopus