Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 281367, 7 pages
http://dx.doi.org/10.1155/2013/281367
Review Article

Recent Achievement in Gene Cloning and Functional Genomics in Soybean

1Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
2Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Received 19 August 2013; Accepted 18 September 2013

Academic Editors: C. Cilas and Y. Yu

Copyright © 2013 Zhengjun Xia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Stupar and J. E. Specht, “Insights from the soybean (Glycine max and Glycine soja) genome: past, present, and future,” in Advances in Agronomy, vol. 118, chapter 4, pp. 177–204, 2013. View at Google Scholar
  2. A. Kaga, T. Shimizu, S. Watanabe et al., “Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections,” Breeding Science, vol. 61, no. 5, pp. 566–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. W. W. Garner and H. A. Allard, “Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants,” Journal Agric Research, vol. 18, pp. 553–606, 1920. View at Google Scholar
  4. W. W. Garner and H. A. Allard, “Comparative responses of long-day and short-day plants to relative length of day and night.,” Plant Physiology, vol. 8, no. 3, pp. 347–356, 1933. View at Google Scholar
  5. F. Fornara, A. de Montaigu, and G. Coupland, “SnapShot: control of flowering in arabidopsis,” Cell, vol. 141, no. 3, pp. 550–e2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Itoh, Y. Nonoue, M. Yano, and T. Izawa, “A pair of floral regulators sets critical day length for Hd3a florigen expression in rice,” Nature Genetics, vol. 42, no. 7, pp. 635–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Schmutz, S. B. Cannon, J. Schlueter et al., “Genome sequence of the palaeopolyploid soybean,” Nature, vol. 463, no. 7278, pp. 178–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. L. Bernard, “Two major genes for time of flowering and maturity in soybeans,” Crop Science, vol. 11, pp. 242–244, 1971. View at Google Scholar
  9. E. R. Bonato and N. A. Vello, “E6, a dominant gene conditioning early flowering and maturity in soybeans,” Genetics and Molecular Biology, vol. 22, no. 2, pp. 229–232, 1999. View at Google Scholar · View at Scopus
  10. R. I. Buzzell, “Inheritance of a soybean flowering response to fluorescent-daylength conditions,” Canadian Journal of Genetics and Cytology, vol. 13, pp. 703–707, 1971. View at Google Scholar
  11. R. I. Buzzell and H. D. Voldeng, “Inheritance of insensitivity to long day length,” Soybean Genetics Newsletter, vol. 7, pp. 26–29, 1980. View at Google Scholar
  12. E. R. Cober and H. D. Voldeng, “A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T,” Crop Science, vol. 41, no. 3, pp. 698–701, 2001. View at Google Scholar · View at Scopus
  13. E. R. Cober, S. J. Molnar, M. Charette, and H. D. Voldeng, “A new locus for early maturity in soybean,” Crop Science, vol. 50, no. 2, pp. 524–527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. A. McBlain, R. L. Bernard, C. R. Cremeens et al., “A procedure to identify genes affecting maturity using soybean isoline testers,” Crop Science, vol. 27, pp. 1127–1132, 1987. View at Google Scholar
  15. J. D. Ray, K. Hinson, J. E. Mankono, and M. F. Malo, “Genetic control of a long-juvenile trait in soybean,” Crop Science, vol. 35, no. 4, pp. 1001–1006, 1995. View at Google Scholar · View at Scopus
  16. S. V. Kumudini, P. K. Pallikonda, and C. Steele, “Photoperiod and e-genes influence the duration of the reproductive phase in soybean,” Crop Science, vol. 47, no. 4, pp. 1510–1517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Sayama, T.-Y. Hwang, H. Yamazaki et al., “Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations,” Breeding Science, vol. 60, no. 4, pp. 380–389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Yamada, M. Hajika, N. Yamada et al., “Effects on flowering and seed yield of dominant alleles at maturity loci E2 and E3 in a Japanese cultivar, Enrei,” Breeding Science, vol. 61, no. 5, pp. 653–660, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Funatsuki, K. Kawaguchi, S. Matsuba, Y. Sato, and M. Ishimoto, “Mapping of QTL associated with chilling tolerance during reproductive growth in soybean,” Theoretical and Applied Genetics, vol. 111, no. 5, pp. 851–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Takahashi, E. R. Benitez, H. Funatsuki, and S. Ohnishi, “Soybean maturity and pubescence color genes improve chilling tolerance,” Crop Science, vol. 45, no. 4, pp. 1387–1393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. I. M. Tasma and R. C. Shoemaker, “Mapping flowering time gene homologs in soybean and their association with maturity (E) loci,” Crop Science, vol. 43, no. 1, pp. 319–328, 2003. View at Google Scholar · View at Scopus
  22. N. Yamanaka, S. Watanabe, K. Toda et al., “Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line,” Theoretical and Applied Genetics, vol. 110, no. 4, pp. 634–639, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Liu, A. Kanazawa, H. Matsumura, R. Takahashi, K. Harada, and J. Abe, “Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene,” Genetics, vol. 180, no. 2, pp. 995–1007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Watanabe, R. Hideshima, X. Zhengjun et al., “Map-based cloning of the gene associated with the soybean maturity locus E3,” Genetics, vol. 182, no. 4, pp. 1251–1262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. R. Cober, J. W. Tanner, and H. D. Voldeng, “Soybean photoperiod-sensitivity loci respond differentially to light quality,” Crop Science, vol. 36, no. 3, pp. 606–610, 1996. View at Google Scholar · View at Scopus
  26. J. Abe, D. Xu, A. Miyano, K. Komatsu, A. Kanazawa, and Y. Shimamoto, “Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci,” Crop Science, vol. 43, no. 4, pp. 1300–1304, 2003. View at Google Scholar · View at Scopus
  27. S. Watanabe, Z. Xia, R. Hideshima et al., “A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering,” Genetics, vol. 188, no. 2, pp. 395–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. M. Woodworth, “Inheritance of growth habit, pod color, and flowering color in soybean,” Journal of American Society of Agronomy, vol. 15, pp. 485–495, 1923. View at Google Scholar
  29. F. V. Owen, “Inheritance studies in soybeans. II. Glabrousness, color of pubescence, time of maturity, and linkage relations,” Genetics, vol. 12, pp. 519–523, 1927. View at Google Scholar
  30. N. Yamanaka, S. Watanabe, K. Toda et al., “Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line,” Theoretical and Applied Genetics, vol. 110, no. 4, pp. 634–639, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. J. Xia, S. Watanabe, T. Yamada et al., “Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering,” The Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 32, pp. E2155–E2164, 2012. View at Google Scholar
  32. L. Liu, Y. Zhu, L. Shen, and H. Yu, “Emerging insights into florigen transport,” Current Opinion in Plant Biology, vol. 16, no. 5, pp. 607–613, 2013. View at Publisher · View at Google Scholar
  33. L. Corbesier, C. Vincent, S. Jang et al., “FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis,” Science, vol. 316, no. 5827, pp. 1030–1033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Tamaki, S. Matsuo, L. W. Hann, S. Yokoi, and K. Shimamoto, “Hd3a protein is a mobile flowering signal in rice,” Science, vol. 316, no. 5827, pp. 1033–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Hayama, B. Agashe, E. Luley, R. King, and G. Coupland, “A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in pharbitis,” The Plant Cell, vol. 19, no. 10, pp. 2988–3000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Kong, B. Liu, Z. Xia et al., “Two coordinately regulated homologs of FLowering Locus T are involved in the control of photoperiodic flowering in soybean,” Plant Physiology, vol. 154, no. 3, pp. 1220–1231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Liu, S. Watanabe, T. Uchiyama et al., “The soybean stem growth habit gene Dt1 is an ortholog of arabidopsis Terminal Flower1,” Plant Physiology, vol. 153, no. 1, pp. 198–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Tian, X. Wang, R. Lee et al., “Artificial selection for determinate growth habit in soybean,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8563–8568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Hecht, F. Foucher, C. Ferrándiz et al., “Conservation of arabidopsis flowering genes in model legumes,” Plant Physiology, vol. 137, no. 4, pp. 1420–1434, 2005. View at Google Scholar
  40. S. Liu, P. K. Kandoth, S. D. Warren et al., “A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens,” Nature, vol. 492, no. 7428, pp. 256–260, 2012. View at Google Scholar
  41. D. E. Cook, T. G. Lee, X. Guo et al., “Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean,” Science, vol. 338, no. 6111, pp. 1206–1209, 2012. View at Google Scholar
  42. H. Gao, N. N. Narayanan, L. Ellison, and M. K. Bhattacharyya, “Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean,” Molecular Plant-Microbe Interactions, vol. 18, no. 10, pp. 1035–1045, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Gao and M. K. Bhattacharyya, “The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences,” BMC Plant Biology, vol. 8, article 29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Kasuga, S. S. Salimath, J. Shi, M. Gijzen, R. I. Buzzell, and M. K. Bhattacharyya, “High resolution genetic and physical mapping of molecular markers linked to the Phytophthora resistance gene Rps1-k in soybean,” Molecular Plant-Microbe Interactions, vol. 10, no. 9, pp. 1035–1044, 1997. View at Google Scholar · View at Scopus
  45. Q. J. Song, L. F. Marek, R. C. Shoemaker et al., “A new integrated genetic linkage map of the soybean,” Theoretical and Applied Genetics, vol. 109, no. 1, pp. 122–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. K.-S. Kim, S. Bellendir, K. A. Hudson et al., “Fine mapping the soybean aphid resistance gene Rag1 in soybean,” Theoretical and Applied Genetics, vol. 120, no. 5, pp. 1063–1071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. G. H. Abel, “Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans,” Crop Science, vol. 9, pp. 697–698, 1969. View at Google Scholar
  48. G. J. Lee, H. R. Boerma, M. R. Villagarcia et al., “A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars,” Theoretical and Applied Genetics, vol. 109, no. 8, pp. 1610–1619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Hamwieh and D. Xu, “Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans,” Breeding Science, vol. 58, no. 4, pp. 355–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. D. Tuyen, H. M. Zhang, and D. H. Xu, “Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line,” Molecular Breeding, vol. 31, pp. 79–86, 2013. View at Google Scholar
  51. T. Ikeda, S. Ohnishi, M. Senda et al., “A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max),” Theoretical and Applied Genetics, vol. 118, no. 8, pp. 1477–1488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Du, M. Wang, S. Fu, and D. Yu, “Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments,” Journal of Genetics and Genomics, vol. 36, no. 12, pp. 721–731, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Abdel-Haleem, T. E. Carter Jr., L. C. Purcell et al., “Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr),” Theoretical and Applied Genetics, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. T. T. Vantoai, S. K. St. Martin, K. Chase et al., “Identification of a QTL associated with tolerance of soybean to soil waterlogging,” Crop Science, vol. 41, no. 4, pp. 1247–1252, 2001. View at Google Scholar · View at Scopus
  55. D. Grant, R. T. Nelson, S. B. Cannon, and R. C. Shoemaker, “SoyBase, the USDA-ARS soybean genetics and genomics database,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp798, pp. D843–D846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Jeong, S. J. Suh, M. H. Kim et al., “Ln is a key regulator of leaflet shape and number of seeds per pod in soybean,” The Plant Cell, vol. 24, no. 12, pp. 4807–4818, 2012. View at Google Scholar
  57. C. Fang, W. Li, G. Li et al., “Cloning of Ln gene through combined approach of map-based cloning and association study in soybean,” Journal of Genetic and Genomics, vol. 40, no. 2, pp. 93–96, 2013. View at Google Scholar
  58. T. Sayama, E. Ono, K. Takagi et al., “The Sg-1glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean,” The Plant Cell, vol. 24, pp. 2123–2138, 2012. View at Google Scholar
  59. J. Du, Z. Tian, Y. Sui et al., “Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean,” The Plant Cell, vol. 24, no. 1, pp. 21–32, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. Z. Tian, M Zhao, M She et al., “Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean,” The Plant Cell, vol. 24, pp. 4422–4436, 2012. View at Google Scholar
  61. M. Libault, A. Farmer, T. Joshi et al., “An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants,” Plant Journal, vol. 63, no. 1, pp. 86–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Wang, M. Libault, T. Joshi et al., “SoyDB: a knowledge database of soybean transcription factors,” BMC Plant Biology, vol. 10, article 14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Zabala, J. Zou, J. Tuteja, D. O. Gonzalez, S. J. Clough, and L. O. Vodkin, “Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection,” BMC Plant Biology, vol. 6, article 26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Ahsan, T. Nakamura, and S. Komatsu, “Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress,” Amino acids, vol. 42, no. 1, pp. 317–327, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Trupti, P. Kapil, R. Michael et al., “Soybean knowledge base (SoyKB): a web resource for soybean translational genomics,” BMC Genomics, vol. 13, supplement 1, p. S15, 2012. View at Google Scholar
  66. D. M. Goodstein, S. Shu, R. Howson et al., “Phytozome: a comparative platform for green plant genomics,” Nucleic Acids Research, vol. 40, pp. D1178–D1186, 2012. View at Google Scholar
  67. J. Du, D. Grant, Z. Tian et al., “SoyTEdb: a comprehensive database of transposable elements in the soybean genome,” BMC Genomics, vol. 11, no. 1, article 113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. N. W. Alkharouf and B. F. Matthews, “SGMD: the soybean genomics and microarray database,” Nucleic Acids Research, vol. 32, pp. D398–D400, 2004. View at Google Scholar · View at Scopus
  69. K. Mochida, T. Yoshida, T. Sakurai, K. Yamaguchi-Shinozaki, K. Shinozaki, and L.-S. P. Tran, “LegumeTFDB: an integrative database of Glycine max, lotus japonicus and medicago truncatula transcription factors,” Bioinformatics, vol. 26, no. 2, pp. 290–291, 2010. View at Google Scholar · View at Scopus
  70. M. W. Li, X. Qi, M. Ni, and H. M. Lam, “Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research,” International Journal of Molecular Sciences, vol. 14, pp. 11444–11483, 2013. View at Google Scholar
  71. J. Cui, P. Li, G. Li et al., “AtPID: Arabidopsis thaliana protein interactome database—an integrative platform for plant systems biology,” Nucleic Acids Research, vol. 36, no. 1, pp. D999–D1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. Arabidopsis interactome mapping consortium, “Evidence for network evolution in an Arabidopsis interactome map,” Science, vol. 333, pp. 601–607, 2011. View at Google Scholar
  73. A. J. Afzal, A. Natarajan, N. Saini et al., “The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots,” Plant Physiology, vol. 151, no. 3, pp. 1264–1280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. J. B. Ridenour, T. Kazi, A. M. Fakhoury, and B. H. Bluhm, “Defining the interactome underlying sudden death syndrome of soybean,” Phytopathology, vol. 101, no. 6, p. S153, 2011. View at Google Scholar
  75. Y. G. Song, D. Ji, S. Li et al., “The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean,” Plos One, vol. 7, no. 7, 2012. View at Google Scholar
  76. T. Wu, E.-X. Pi, S.-N. Tsai et al., “GmPHD5 acts as an important regulator for crosstalk between histone H3K4 di-methylation and H3K14 acetylation in response to salinity stress in soybean,” BMC Plant Biology, vol. 11, article 178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Qiu, X. Li, Y. Guo, J. Wang, S. A. Jackson, and R. -Z. Chang, “A platform for soybean molecular breeding: the utilization of core collections for food security,” Plant Molecular Biology, vol. 83, no. 1, pp. 41–50, 2013. View at Publisher · View at Google Scholar