Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 309143, 8 pages
http://dx.doi.org/10.1155/2013/309143
Review Article

Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

1Department of Neurology, Paracelsus Medical University, Ignaz Harrer-Strasse 79, A-5020 Salzburg, Austria
2Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, 39012 Merano, Italy
3Department of Medicine, Franz Tappeiner Hospital, Via Rossini 5, 39012 Merano, Italy
4Department of Physiology, Medical University of Graz, Harrachgasse 21/5, A-8010 Graz, Austria
5Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, University of Verona, Piazzale Luduvico Antonio Scuro 10, 37134 Verona, Italy

Received 22 August 2013; Accepted 12 September 2013

Academic Editors: G. Caruso and G. Dayanithi

Copyright © 2013 Raffaele Nardone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans.