Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 313492, 8 pages
http://dx.doi.org/10.1155/2013/313492
Research Article

Von Willebrand Factor Antigen Predicts Response to Double Dose of Aspirin and Clopidogrel by PFA-100 in Patients Undergoing Primary Angioplasty for St Elevation Myocardial Infarction

Operative Unit of Cardiology, Fondazione Gabriele Monasterio, Ospedale del Cuore “G. Pasquinucci”, Via Aurelia Sud, 54100 Massa, Italy

Received 7 August 2013; Accepted 8 October 2013

Academic Editors: H. Kitabata and E. Skalidis

Copyright © 2013 Jacopo Gianetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. O. Spiel, J. C. Gilbert, and B. Jilma, “Von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes,” Circulation, vol. 117, no. 11, pp. 1449–1459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D. Blann, “Plasma von Willebrand factor, thrombosis, and the endothelium: the first 30 years,” Thrombosis and Haemostasis, vol. 95, no. 1, pp. 49–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Badimon, J. J. Badimon, J. H. Chesebro, and V. Fuster, “von Willebrand factor and cardiovascular disease,” Thrombosis and Haemostasis, vol. 70, no. 1, pp. 111–118, 1993. View at Google Scholar · View at Scopus
  4. J. E. Sadler, “Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura,” Blood, vol. 112, no. 1, pp. 11–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. F. De Meyer, G. Stoll, D. D. Wagner, and C. Kleinschnitz, “Von Willebrand factor: an emerging target in stroke therapy,” Stroke, vol. 43, no. 2, pp. 599–606, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Sofi, R. Marcucci, A. M. Gori, R. Abbate, and G. F. Gensini, “Residual platelet reactivity on aspirin therapy and recurrent cardiovascular events - A meta-analysis,” International Journal of Cardiology, vol. 128, no. 2, pp. 166–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Marcucci, R. Paniccia, E. Antonucci et al., “Residual platelet reactivity is an independent predictor of myocardial injury in acute myocardial infarction patients on antiaggregant therapy,” Thrombosis and haemostasis, vol. 98, pp. 705–706, 2007. View at Google Scholar
  8. R. Marcucci, A. M. Gori, R. Paniccia et al., “Residual platelet reactivity is associated with clinical and laboratory characteristics in patients with ischemic heart disease undergoing PCI on dual antiplatelet therapy,” Atherosclerosis, vol. 195, no. 1, pp. e217–e223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. L. Grove, A.-M. Hvas, H. L. Johnsen et al., “A comparison of platelet function tests and thromboxane metabolites to evaluate aspirin response in healthy individuals and patients with coronary artery disease,” Thrombosis and Haemostasis, vol. 103, no. 6, pp. 1245–1253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Gianetti, M. S. Parri, S. Sbrana et al., “Platelet activation predicts recurrent ischemic events after percutaneous coronary angioplasty: a 6 months prospective study,” Thrombosis Research, vol. 118, no. 4, pp. 487–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. Parri, J. Gianetti, A. Dushpanova et al., “Pantoprazole significantly interferes with antiplatelet effect of clopidogrel: results of a pilot randomized trial,” International Journal of Cardiology, vol. 167, no. 5, pp. 2177–2181.
  12. M. Sztukowska, L. Gallinaro, M. G. Cattini et al., “Von Willebrand factor propeptide makes it easy to identify the shorter Von Willebrand factor survival in patients with type 1 and type Vicenza von Willebrand disease,” British Journal of Haematology, vol. 143, no. 1, pp. 107–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Kokame, Y. Nobe, Y. Kokubo, A. Okayama, and T. Miyata, “FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay,” British Journal of Haematology, vol. 129, no. 1, pp. 93–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. Cutlip, S. Windecker, R. Mehran et al., “Clinical end points in coronary stent trials: a case for standardized definitions,” Circulation, vol. 115, no. 17, pp. 2344–2351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Ndrepepa, T. Schuster, M. Hadamitzky et al., “Validation of the bleeding academic research consortium definition of bleeding in patients with coronary artery disease undergoing percutaneous coronary intervention,” Circulation, vol. 125, no. 11, pp. 1424–1431, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Folsom, K. K. Wu, W. D. Rosamond, A. R. Sharrett, and L. E. Chambless, “Prospective study of hemostatic factors and incidence of coronary heart disease: the atherosclerosis risk in communities (ARIC) Study,” Circulation, vol. 96, no. 4, pp. 1102–1108, 1997. View at Google Scholar · View at Scopus
  17. C. Chion, C. Doggen, J. Crawley, D. A. Lane, and F. R. Rosendaal, “ADAMTS-13 and von Willebrand factor and the risk of myocardial infarction in men,” Blood, vol. 109, no. 5, pp. 1998–2000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Porto, A. M. Leone, L. Nanni et al., “Interplay of platelet polymorphisms, risk factors, and von Willebrand factor (corrected) in determining PFA-100 results in patients with coronary artery disease,” Blood Coagul Fibrinolysis, vol. 16, pp. 97–104, 2005. View at Google Scholar
  19. A. D. Blann, N. Kuzniatsova, and G. Y. Lip, “Vascular and platelet responses to aspirin in patients with coronart artery disease,” European Journal of Clinical Investigation, vol. 43, pp. 91–99, 2013. View at Google Scholar
  20. M. Crescente, A. M. Mezzasoma, M. Del Pinto et al., “Incomplete inhibition of platelet function as assessed by the platelet function analyzer (PFA-100) identifies a subset of cardiovascular patients with high residual platelet response while on aspirin,” Platelets, vol. 22, no. 3, pp. 179–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Crescente, A. Di Castelnuovo, L. Iacoviello, G. De Gaetano, and C. Cerletti, “PFA-100 closure time to predict cardiovascular events in aspirin-treated cardiovascular patients: a meta-analysis of 19 studies comprising 3,003 patients,” Thrombosis and Haemostasis, vol. 99, no. 6, pp. 1129–1131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Cuisset, P.-E. Morange, and M.-C. Alessi, “High residual platelet reactivity and thrombotic events,” The Journal of the American Medical Association, vol. 306, no. 23, p. 2561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Matetzky, B. Shenkman, V. Guetta et al., “Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction,” Circulation, vol. 109, no. 25, pp. 3171–3175, 2004. View at Google Scholar · View at Scopus
  24. D. Aradi, A. Komócsi, A. Vorobcsuk et al., “Prognostic significance of high on-clopidogrel platelet reactivity after percutaneous coronary intervention: systematic review and meta-analysis,” American Heart Journal, vol. 160, no. 3, pp. 543–551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Brar, J. Ten Berg, R. Marcucci et al., “Impact of platelet reactivity on clinical outcomes after percutaneous coronary intervention: a collaborative meta-analysis of individual participant data,” Journal of the American College of Cardiology, vol. 58, no. 19, pp. 1945–1954, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. P. Collet, T. Cuisset, G. Rangé et al., “Bedside monitoring to adjust antiplatelet therapy for coronary stenting,” The New England Journal of Medicine, vol. 367, pp. 2100–2109, 2012. View at Google Scholar
  27. M. J. Price, D. J. Angiolillo, P. S. Teirstein et al., “Platelet reactivity and cardiovascular outcomes after percutaneous coronary intervention: a time-dependent analysis of the gauging responsiveness with a verifynow P2Y12 assay: impact on thrombosis and safety (GRAVITAS) trial,” Circulation, vol. 124, no. 10, pp. 1132–1137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Aradi, A. Komocsi, M. J. Price et al., “Efficacy and safety of intensified antiplatelet therapy on the basis of platelet reactivity testing in patients after percutaneous coronary intervention: systematic review and meta-analysis,” International Journal of Cardiology, vol. 167, no. 5, pp. 2140–2148, 2012. View at Publisher · View at Google Scholar
  29. H. Ulrichts, K. Silence, A. Schoolmeester et al., “Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs,” Blood, vol. 118, no. 3, pp. 757–765, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. D. J. Angiolillo, “The evolution of antiplatelet therapy in the treatment of acute coronary syndromes: from aspirin to the present day,” Drugs, vol. 72, pp. 2087–2116, 2012. View at Google Scholar
  31. S. R. Mehta, J.-F. Tanguay, J. W. Eikelboom et al., “Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial,” The Lancet, vol. 376, no. 9748, pp. 1233–1243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Palmerini, C. Barozzi, L. Tomasi et al., “A randomised study comparing the antiplatelet and antinflammatory effect of clopidogrel 150 mg/day versus 75 mg/day in patients with ST-segment elevation acute myocardial infarction and poor responsiveness to clopidogrel: results from the DOUBLE study,” Thrombosis Research, vol. 125, no. 4, pp. 309–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Silvain, A. Bellemain-Appaix, O. Barthélémy, F. Beygui, J.-P. Collet, and G. Montalescot, “Optimal use of thienopyridines in Non-ST-elevation acute coronary syndrome following CURRENT-OASIS 7,” Circulation, vol. 4, no. 1, pp. 95–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Antithrombotic Trialists' Collaboration, “Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients,” British Medical Journal, vol. 324, no. 7329, pp. 71–86, 2002. View at Google Scholar
  35. R. Marcucci, F. Cesari, S. Cinotti et al., “ADAMTS-13 activity in the presence of elevated von Willebrand factor levels as a novel mechanism of residual platelet reactivity in high risk coronary patients on antiplatelet treatment,” Thrombosis Research, vol. 123, no. 1, pp. 130–136, 2008. View at Publisher · View at Google Scholar · View at Scopus