Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 350157, 11 pages
http://dx.doi.org/10.1155/2013/350157
Research Article

Annual Variation in Flowering Phenology, Pollination, Mating System, and Pollen Yield in Two Natural Populations of Schima wallichii (DC.) Korth

1Department of Forestry, Mizoram University, Aizawl, Mizoram, India
2Department of Forestry, Uttarakhand University of Horticulture and Forestry, Hill Campus, Ranichauri, Tehri Garhwal, Uttarakhand, India
3Department of Botany, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India

Received 8 August 2013; Accepted 9 October 2013

Academic Editors: R. Aroca and M. Cresti

Copyright © 2013 Vinod Prasad Khanduri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Poole, B. J. Rathcke, and F. Gary Stiles, “Regularity, randomness, and aggregation in flowering phenologies,” Science, vol. 203, no. 4379, pp. 470–471, 1979. View at Google Scholar · View at Scopus
  2. J. Ollerton and A. J. Lack, “Flowering phenology: an example of relaxation of natural selection?” Trends in Ecology and Evolution, vol. 7, no. 8, pp. 274–276, 1992. View at Google Scholar · View at Scopus
  3. D. R. Campbell and A. F. Motten, “The mechanism of competition for pollination between two forest herbs,” Ecology, vol. 66, no. 2, pp. 554–563, 1985. View at Publisher · View at Google Scholar
  4. R. J. Mitchell, R. G. Shaw, and N. M. Waser, “Pollinator selection, quantitative genetics, and predicted evolutionary responses of floral traits in Penstemon centranthifolius (Scrophulariaceae),” International Journal of Plant Sciences, vol. 159, no. 2, pp. 331–337, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. W. E. Kunin, “Population size and density effects in pollination: pollinator foraging and plant reproductive success in experimental arrays of Brassica kaber,” Journal of Ecology, vol. 85, no. 2, pp. 225–234, 1997. View at Google Scholar · View at Scopus
  6. M. Bosch and N. M. Waser, “Effects of local density on pollination and reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae),” American Journal of Botany, vol. 86, no. 6, pp. 871–879, 1999. View at Google Scholar · View at Scopus
  7. M. L. Stanton and R. E. Preston, “Ecological consequences and phenotypic correlates of petal size variation in wild radish, Raphanus sativus (Brassicaceae),” American Journal of Botany, vol. 75, no. 4, pp. 528–539, 1988. View at Google Scholar · View at Scopus
  8. J. E. Cresswell and C. Galen, “Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum,” American Naturalist, vol. 138, no. 6, pp. 1342–1353, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. G. W. Frankie, P. A. Opler, and K. S. Bawa, “Foraging behaviour of solitary bees: implications for outcrossing of a neotropical forest tree species,” Journal of Ecology, vol. 64, no. 3, pp. 1049–1057, 1976. View at Publisher · View at Google Scholar
  10. A. G. Stephenson, “When does outcrossing occur in a mass-flowering plant?” Evolution, vol. 36, no. 4, pp. 762–767, 1982. View at Publisher · View at Google Scholar
  11. S. Talavera, P. E. Gibbs, and J. Herrera, “Reproductive biology of Cistus ladanifer (Cistaceae),” Plant Systematics and Evolution, vol. 186, no. 3-4, pp. 123–134, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. M. G. Iwaizumi and S. Sakai, “Variation in flower biomass among nearby populations of Impatiens textori (Balsaminaceae): effects of population plant densities,” Canadian Journal of Botany, vol. 82, no. 5, pp. 563–572, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Lloyd and C. J. Webb, “The avoidance of interference between the presentation of pollen and stigmas in angiosperms, I. Dichogamy,” New Zealand Journal of Botany, vol. 24, no. 1, pp. 135–162, 1986. View at Google Scholar
  14. A. A. Snow, T. P. Spira, R. Simpson, and R. A. Klips, “The ecology of geitonogamous pollination,” in Floral Biology, D. G. Lloyd and S. C. H. Barrett, Eds., pp. 191–216, Chapman and Hall, New York, NY, USA, 1996. View at Google Scholar
  15. S. C. H. Barrett, “The evolution, maintenance and loss of self-incompatibility systems,” in Plant Reproductive Ecology—Patterns and Strategies, J. Lovett-Dous and L. Lovett-Dous, Eds., pp. 98–124, Oxford University Press, New York, NY, USA, 1988. View at Google Scholar
  16. M. Sedgley, “Self-incompatibility in woody horticultural species,” in Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, E. G. Williams, A. Clarke, and R. B. Nox, Eds., pp. 141–163, Kluwer Academic, Dodrecht, The Netherlands, 1994. View at Google Scholar
  17. K. S. Bawa and F. S. P. Ng, “Phenology—commentary,” in Reprodutive Ecology of Tropical Forest Plants, K. S. Bawa and M. Hadley, Eds., pp. 17–20, UNESCO, Paris, France, 1990. View at Google Scholar
  18. A. C. Webber and G. Gottsberger, “Phenological patterns of six Xylopia (Annonaceae) species in Central Amazonia,” Phyton, vol. 39, no. 2, pp. 293–301, 1999. View at Google Scholar · View at Scopus
  19. L. E. Newstrom, G. W. Frankie, H. G. Baker, and R. K. Colwell, “Diversity of long-term flowering patterns,” in La Selva: Ecology and Natural History of a Neotropical Rain Forest, L. A. McDade, K. S. Bawa, H. A. Hespenheide, and G. S. Hartshorn, Eds., pp. 142–160, University of Chicago Press, Chicago, Ill, USA, 1994. View at Google Scholar
  20. M. Griffiths, Index of Garden Plants, Macmillan Press, London, UK, 1994.
  21. P. R. Tamrakar, “Management system of natural Schima/Castanopsis forest in the middle hills of Nepal,” Banko Jankari, vol. 3, no. 2, pp. 3–11, 1992. View at Google Scholar
  22. R. T. Corlett, “Environmental forestry in Hong Kong: 1871–1997,” Forest Ecology and Management, vol. 116, no. 1–3, pp. 93–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Li-Zhen and Z. W. Li, “Study on applied effectiveness of biological firebreak network of Schima,” Scientia Silvae Sinicae, vol. 33, no. 4, pp. 338–348, 1997. View at Google Scholar
  24. R. S. Troup, The Silviculture of Indian Trees, vol. 2, Clarendon, Oxford, UK, 1921.
  25. J. G. Bishop and D. W. Schemske, “Variation in flowering phenology and its consequences for lupines colonizing Mount St. Helens,” Ecology, vol. 79, no. 2, pp. 534–546, 1998. View at Google Scholar · View at Scopus
  26. M. E. McIntosh, “Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae),” Plant Ecology, vol. 159, no. 1, pp. 1–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. C. K. Augspurger, “Phenology, flowering synchrony, and fruit set of six neotropical shrubs,” Biotropica, vol. 15, no. 4, pp. 257–267, 1983. View at Google Scholar · View at Scopus
  28. R. B. Primack, “Variation in the phenology of natural populations of montane shrubs in New Zealand,” Journal of Ecology, vol. 68, no. 3, pp. 849–862, 1980. View at Publisher · View at Google Scholar
  29. C. A. Kearns and D. W. Inouye, Techniques for Pollination Biologists, University Press of Colorado, Niwot, Colo, USA, 1993.
  30. R. Ornduff, “Pollen flow in Lythrum junceum, a tristylous species,” New Phytologist, vol. 75, no. 1, pp. 161–166, 1975. View at Publisher · View at Google Scholar
  31. R. T. Molina, A. M. Rodríguez, I. S. Palacios, and F. G. López, “Pollen production in anemophilous trees,” Grana, vol. 35, no. 1, pp. 38–46, 1996. View at Publisher · View at Google Scholar
  32. R. S. Gross and P. A. Werner, “Relationships among flowering phenology, insect visitors, and seed-set of individuals: experimental studies on four co-occurring species of golden rod (Solidago: Compositae),” Ecological Monographs, vol. 53, no. 1, pp. 95–117, 1983. View at Publisher · View at Google Scholar
  33. J. Zar, Biostatistical Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 4th edition, 1999.
  34. T. R. Zapata and M. T. K. Arroyo, “Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela,” Biotropica, vol. 10, no. 3, pp. 221–230, 1978. View at Publisher · View at Google Scholar
  35. D. G. Lloyd and D. J. Schoen, “Self- and cross-fertilization in plants. I. Functional dimensions,” International Journal of Plant Sciences, vol. 153, no. 3, pp. 358–369, 1992. View at Google Scholar · View at Scopus
  36. D. Medan and N. Bartoloni, “Fecundity effects of dichogamy in an asynchronically flowering population: a genetic model,” Annals of Botany, vol. 81, no. 3, pp. 373–383, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. V. P. Khanduri, “Annual variation in floral phenology and pollen production in a 25-year-old plantation of Tectona grandis,” Nordic Journal of Botany, vol. 30, no. 1, pp. 82–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. A. El-Kassaby, A. M. K. Fashler, and O. Sziklai, “Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard,” Silvae Genetica, vol. 33, pp. 120–125, 1984. View at Google Scholar
  39. J. Burczyk and W. Chalupka, “Flowering and cone production variability and its effect on parental balance in a Scots pine clonal seed orchard,” Annales des Sciences Forestieres, vol. 54, no. 2, pp. 129–144, 1997. View at Google Scholar · View at Scopus
  40. J. N. Owens, J. Bennett, and S. L'Hirondelle, “Pollination and cone morphology affect cone and seed production in lodgepole pine seed orchards,” Canadian Journal of Forest Research, vol. 35, no. 2, pp. 383–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. B. S. Lai, T. Funda, C. Liewlaksaneeyanawin et al., “Pollination dynamics in a Douglas-fir seed orchard as revealed by pedigree reconstruction,” Annals of Forest Science, vol. 67, no. 8, article 808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. A. Mooney, Y. B. Linhart, and M. A. Snyder, “Masting in ponderosa pine: comparisons of pollen and seed over space and time,” Oecologia, vol. 165, no. 3, pp. 651–661, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. V. L. Sork, J. Bramble, and O. Sexton, “Ecology of mast-fruiting in three species of North American deciduous oaks,” Ecology, vol. 74, no. 2, pp. 528–541, 1993. View at Google Scholar · View at Scopus
  44. D. Kelly and V. L. Sork, “Mast seeding in perennial plants: why, how, where?” Annual Review of Ecology and Systematics, vol. 33, pp. 427–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Sanguinetti and T. Kitzberger, “Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer Araucaria araucana,” Austral Ecology, vol. 33, no. 1, pp. 78–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Caramiello, C. Siniscalco, L. Mercalli, and A. Potenza, “The relationship between airborne pollen grains and unusual weather conditions in Turin (Italy) in 1989, 1990 and 1991,” Grana, vol. 33, no. 6, pp. 327–332, 1994. View at Google Scholar · View at Scopus
  47. D. Spano and C. Cesaraccio, “Phenological stages of natural species and their use as climate indicators,” in Proceedings of the ISB Phenology Symposium, Boston, Mass, USA, March 1998.
  48. P. A. Opler, G. W. Frankie, and H. G. Baker, “Rainfall as a factor in the release, timing, and synchronization of anthesis by tropical trees and shrubs,” Journal of Biogeography, vol. 3, no. 3, pp. 231–236, 1976. View at Publisher · View at Google Scholar
  49. Y. Iwasa and A. Satake, “Mechanisms inducing spatially extended synchrony in mast seeding: the role of pollen coupling and environmental fluctuation,” Ecological Research, vol. 19, no. 1, pp. 13–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. P.-G. Tapper, “Long-term patterns of mast fruiting in fraxinus excelsior,” Ecology, vol. 77, no. 8, pp. 2567–2572, 1996. View at Google Scholar · View at Scopus
  51. T. M. Knight, J. A. Steets, J. C. Vamosi et al., “Pollen limitation of plant reproduction: pattern and process,” Annual Review of Ecology, Evolution, and Systematics, vol. 36, pp. 467–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. L. D. Harder, “Pollen removal by bumble bees and its implications for pollen dispersal,” Ecology, vol. 71, no. 3, pp. 1110–1125, 1990. View at Google Scholar · View at Scopus
  53. S. Wagenius and S. P. Lyon, “Reproduction of Echinacea angustifolia in fragmented prairie is pollen-limited but not pollinator-limited,” Ecology, vol. 91, no. 3, pp. 733–742, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. T. D. Allison, “Pollen production and plant density affect pollination and seed production in Taxus canadensis,” Ecology, vol. 71, no. 2, pp. 516–522, 1990. View at Google Scholar · View at Scopus
  55. K. S. Bawa, S. H. Bullock, D. R. Perry, R. E. Coville, and M. H. Grayum, “Reproductive biology of tropical lowland rain forest trees. II. Pollination systems,” American Journal of Botany, vol. 72, no. 3, pp. 346–356, 1985. View at Google Scholar · View at Scopus
  56. L. D. van Vleck, E. J. Pollak, and E. A. Oltenacu, Genetics for the Animal Sciences, W. H. Freeman and Company, New York, NY, USA, 1987.