Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 370151, 6 pages
http://dx.doi.org/10.1155/2013/370151
Research Article

Improved Tissue Culture Conditions for Engineered Skeletal Muscle Sheets

Department of Basic Sciences, New York University, 345 East 24th Street, New York, NY 10010, USA

Received 29 December 2012; Accepted 24 January 2013

Academic Editors: L. Guimarães-Ferreira, H. Nicastro, J. Wilson, and N. E. Zanchi

Copyright © 2013 Sara Hinds et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Bach, J. P. Beier, J. Stern-Staeter, and R. E. Horch, “Skeletal muscle tissue engineering,” Journal of Cellular and Molecular Medicine, vol. 8, no. 4, pp. 413–422, 2004. View at Publisher · View at Google Scholar
  2. J. Henningsen, K. T. G. Rigbolt, B. Blagoev, B. K. Pedersen, and I. Kratchmarova, “Dynamics of the skeletal muscle secretome during myoblast differentiation,” Molecular and Cellular Proteomics, vol. 9, no. 11, pp. 2482–2496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Karalaki, S. Fili, A. Philippou, and M. Koutsilieris, “Muscle regeneration: cellular and molecular events,” In Vivo, vol. 23, no. 5, pp. 779–796, 2009. View at Google Scholar · View at Scopus
  4. T. P. White and K. A. Esser, “Satellite cell and growth factor involvement in skeletal muscle growth,” Medicine and Science in Sports and Exercise, vol. 21, no. 5, pp. S158–S163, 1989. View at Google Scholar · View at Scopus
  5. E. Schultz, “Satellite cell behavior during skeletal muscle growth and regeneration,” Medicine and Science in Sports and Exercise, vol. 21, no. 5, pp. S181–S186, 1989. View at Google Scholar · View at Scopus
  6. A. Pannérec, G. Marazzi, and D. SassoonSee, “Stem cells in the hood: the skeletal muscle niche,” Trends in Molecular Medicine, vol. 18, no. 10, pp. 599–606, 2012. View at Publisher · View at Google Scholar
  7. M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, “Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration,” Development, vol. 138, no. 17, pp. 3625–3637, 2011. View at Publisher · View at Google Scholar
  8. W. Yan, S. George, U. Fotadar et al., “Tissue engineering of skeletal muscle,” Tissue Engineering, vol. 13, no. 11, pp. 2781–2790, 2007. View at Publisher · View at Google Scholar
  9. S. Hinds, W. Bian, R. G. Dennis, and N. Bursac, “The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle,” Biomaterials, vol. 32, no. 14, pp. 3575–3583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Bian and N. Bursac, “Engineered skeletal muscle tissue networks with controllable architecture,” Biomaterials, vol. 30, no. 7, pp. 1401–1412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Cossu and S. Biressi, “Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration,” Seminars in Cell and Developmental Biology, vol. 16, no. 4-5, pp. 623–631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Pasut, P. Oleynik, and M. A. Rudnicki, “Isolation of muscle stem cells by fluorescence activated cell sorting cytometry,” in Myogenesis: Methods in Molecular Biology, vol. 798, pp. 53–64, 2012. View at Publisher · View at Google Scholar
  13. W. E. Blanco-Bose, C. C. Yao, R. H. Kramer, and H. M. Blau, “Purification of mouse primary myoblasts based on α7 integrin expression,” Experimental Cell Research, vol. 265, no. 2, pp. 212–220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. G. Dennis, P. E. Kosnik, M. E. Gilbert, and J. A. Faulkner, “Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines,” American Journal of Physiology, vol. 280, no. 2, pp. C288–C295, 2001. View at Google Scholar · View at Scopus
  15. N. Rao, S. Evans, D. Stewart et al., “Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices,” Biomedical Microdevices, vol. 15, no. 1, pp. 161–169, 2013. View at Publisher · View at Google Scholar
  16. C. C. Yao, B. L. Ziober, A. E. Sutherland, D. L. Mendrick, and R. H. Kramer, “Laminins promote the locomotion of skeletal myoblasts via the alpha 7 integrin receptor,” Journal of Cell Science, vol. 109, no. 13, pp. 3139–3150, 1996. View at Google Scholar · View at Scopus
  17. M. R. Hicks, T. V. Cao, D. H. Campbell, and P. R. Standley, “Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation,” Journal of Applied Physiology, vol. 113, no. 3, pp. 465–472, 2012. View at Publisher · View at Google Scholar
  18. K. Hannon, A. J. Kudla, M. J. McAvoy, K. L. Clase, and B. B. Olwin, “Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms,” Journal of Cell Biology, vol. 132, no. 6, pp. 1151–1159, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. G. R. Adams, “Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle,” Clinical Orthopaedics and Related Research, no. 403, pp. S188–S196, 2002. View at Google Scholar · View at Scopus
  20. A. Musarò, K. McCullagh, A. Paul et al., “Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle,” Nature Genetics, vol. 27, no. 2, pp. 195–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Bischoff, “Enzymatic liberation of myogenic cells from adult rat muscle,” Anatomical Record, vol. 180, no. 4, pp. 645–661, 1974. View at Google Scholar · View at Scopus
  22. R. Bischoff, “A satellite cell mitogen from crushed adult muscle,” Developmental Biology, vol. 115, no. 1, pp. 140–147, 1986. View at Google Scholar · View at Scopus
  23. H. Li, S. K. Choudhary, D. J. Milner, M. I. Munir, I. R. Kuisk, and Y. Capetanaki, “Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators myoD and myogenin,” Journal of Cell Biology, vol. 124, no. 5, pp. 827–841, 1994. View at Google Scholar · View at Scopus
  24. D. D. W. Cornelison, “Context matters: in vivo and in vitro influences on muscle satellite cell activity,” Journal of Cellular Biochemistry, vol. 105, no. 3, pp. 663–669, 2008. View at Publisher · View at Google Scholar · View at Scopus