Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 376959, 7 pages
http://dx.doi.org/10.1155/2013/376959
Research Article

Desferrioxamine Reduces Oxidative Stress in the Lung Contusion

1Department of Pediatric Surgery, Medical Faculty, Trakya University, 22030 Edirne, Turkey
2Department of Histology and Embryology, Medical Faculty, Trakya University, 22030 Edirne, Turkey
3Biochemistry Division, Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
4Department of Cardiology, Edirne State Hospital, 22100 Edirne, Turkey

Received 5 June 2013; Accepted 9 July 2013

Academic Editors: T. Hida and T. Liu

Copyright © 2013 Umit Nusret Basaran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Ismail and R. I. al-Refaie, “Chest trauma in children, single center experience,” Archivos de Bronconeumología, vol. 48, no. 10, pp. 362–366, 2012. View at Google Scholar
  2. M. Inan, S. Ayvaz, N. Sut, B. Aksu, U. N. Basaran, and T. Ceylan, “Blunt chest trauma in childhood,” ANZ Journal of Surgery, vol. 77, no. 8, pp. 682–685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Rashid, T. Wikström, and P. Örtenwall, “Outcome of lung trauma,” European Journal of Surgery, vol. 166, no. 1, pp. 22–28, 2000. View at Google Scholar · View at Scopus
  4. D. K. Nakayama, M. L. Ramenofsky, and M. I. Rowe, “Chest injuries in childhood,” Annals of Surgery, vol. 210, no. 6, pp. 770–775, 1989. View at Google Scholar · View at Scopus
  5. B. J. Bickford, “Chest injuries in childhood and adolescence,” Thorax, vol. 17, pp. 240–243, 1962. View at Google Scholar · View at Scopus
  6. P. R. Miller, M. A. Croce, T. K. Bee et al., “ARDS after pulmonary contusion: accurate measurement of contusion volume identifies high-risk patients,” Journal of Trauma, vol. 51, no. 2, pp. 223–230, 2001. View at Google Scholar · View at Scopus
  7. K. Raghavendran, B. A. Davidson, J. A. Woytash et al., “The evolution of isolated bilateral lung contusion from blunt chest trauma in rats: cellular and cytokine responses,” Shock, vol. 24, no. 2, pp. 132–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Hoth, J. D. Stitzel, F. S. Gayzik et al., “The pathogenesis of pulmonary contusion: an open chest model in the rat,” Journal of Trauma, vol. 61, no. 1, pp. 32–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. J. van Wessem, M. P. Hennus, L. van Wagenberg, L. Koenderman, and L. P. Leenen, “Mechanical ventilation increases the inflammatory response induced by lung contusion,” Journal of Surgical Research, vol. 183, no. 1, pp. 377–484, 2013. View at Google Scholar
  10. J. M. C. Gutteridge, R. Richmond, and B. Halliwell, “Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine,” Biochemical Journal, vol. 184, no. 2, pp. 469–472, 1979. View at Google Scholar · View at Scopus
  11. K. Kalimeris, C. Nastos, N. Papoutsidakis et al., “Iron chelation prevents lung injury after major hepatectomy,” Hepatology Research, vol. 40, no. 8, pp. 841–850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. G. Zarogiannis, A. Jurkuvenaite, S. Fernandez et al., “Ascorbate and deferoxamine administration after chlorine exposure decrease mortality and lung injury in mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 2, pp. 386–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. G. Kostopanagiotou, K. A. Kalimeris, N. P. Arkadopoulos et al., “Desferrioxamine attenuates minor lung injury following surgical acute liver failure,” European Respiratory Journal, vol. 33, no. 6, pp. 1429–1436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Minaiyan, E. Mostaghel, and P. Mahzouni, “Preventive therapy of experimental colitis with selected iron chelators and anti-oxidants,” International Journal of Preventive Medicine, vol. 3, supplement 1, pp. S162–S169, 2012. View at Google Scholar
  15. K. M. Musallam and A. T. Taher, “Iron chelation therapy for transfusional iron overload: a swift evolution,” Hemoglobin, vol. 35, no. 5-6, pp. 565–573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Raghavendran, B. A. Davidson, J. D. Helinski et al., “A rat model for isolated bilateral lung contusion from blunt chest trauma,” Anesthesia and Analgesia, vol. 101, no. 5, pp. 1482–1489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Jain, R. McVie, J. Duett, and J. J. Herbst, “Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes,” Diabetes, vol. 38, no. 12, pp. 1539–1543, 1989. View at Google Scholar · View at Scopus
  18. E. Beutler, O. Duron, and B. M. Kelly, “Improved method for the determination of blood glutathione,” The Journal of Laboratory and Clinical Medicine, vol. 61, pp. 882–888, 1963. View at Google Scholar · View at Scopus
  19. L. Flohe and F. Otting, “Superoxide dismutase assays,” Methods in Enzymology, vol. 105, pp. 93–104, 1984. View at Google Scholar · View at Scopus
  20. D. E. Paglia and W. N. Valentine, “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” The Journal of Laboratory and Clinical Medicine, vol. 70, no. 1, pp. 158–169, 1967. View at Google Scholar · View at Scopus
  21. H. Aebi, “[13] Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Çalikoglu, L. Tamer, N. Sucu et al., “The effects of caffeic acid phenethyl ester on tissue damage in lung after hindlimb ischemia-reperfusion,” Pharmacological Research, vol. 48, no. 4, pp. 397–403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Türüt, H. Ciralik, M. Kilinc, D. Ozbag, and S. S. Imrek, “Effects of early administration of dexamethasone, N-acetylcysteine and aprotinin on inflammatory and oxidant-antioxidant status after lung contusion in rats,” Injury, vol. 40, no. 5, pp. 521–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. B. Sayhan, M. Kanter, S. Oguz, and M. Erboga, “Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat,” Journal of Molecular Histology, vol. 43, no. 6, pp. 691–698, 2012. View at Google Scholar
  25. M. W. Knöferl, U. C. Liener, D. H. Seitz et al., “Cardiopulmonary, histological, and inflammatory alterations after lung contusion in a novel mouse model of blunt chest trauma,” Shock, vol. 19, no. 6, pp. 519–525, 2003. View at Google Scholar · View at Scopus
  26. M. Perl, F. Gebhard, U. B. Brückner et al., “Pulmonary contusion causes impairment of macrophage and lymphocyte immune functions and increases mortality associated with a subsequent septic challenge,” Critical Care Medicine, vol. 33, no. 6, pp. 1351–1358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Gokce, O. Saydam, V. Hanci, M. Can, and B. Bahadir, “Antioxidant vitamins C, E and coenzyme Q10 vs dexamethasone: comparisons of their effects in pulmonary contusion model,” Journal of Cardiothoracic Surgery, vol. 7, article 92, 2012. View at Google Scholar
  28. J. L. Campian, M. Qian, X. Gao, and J. W. Eaton, “Oxygen tolerance and coupling of mitochondrial electron transport,” Journal of Biological Chemistry, vol. 279, no. 45, pp. 46580–46587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Jomova and M. Valko, “Advances in metal-induced oxidative stress and human disease,” Toxicology, vol. 283, no. 2-3, pp. 65–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Turi, F. Yang, M. D. Garrick, C. A. Piantadosi, and A. J. Ghio, “The iron cycle and oxidative stress in the lung,” Free Radical Biology and Medicine, vol. 36, no. 7, pp. 850–857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. I. Liochev and I. Fridovich, “Copper- and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase,” Journal of Biological Chemistry, vol. 275, no. 49, pp. 38482–38485, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. S. I. Liochev and I. Fridovich, “Reversal of the superoxide dismutase reaction revisited,” Free Radical Biology and Medicine, vol. 34, no. 7, pp. 908–910, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. D. R. Gough and T. G. Cotter, “Hydrogen peroxide: a Jekyll and Hyde signalling molecule,” Cell Death and Disease, vol. 2, no. 10, article e213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Kehrer, “The Haber-Weiss reaction and mechanisms of toxicity,” Toxicology, vol. 149, no. 1, pp. 43–50, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Lipinski, “Hydroxyl radical and its scavengers in health and disease,” Oxidative Medicine and Cellular Longevity, vol. 2011, Article ID 809696, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Y. Tsang, S. C. Tam, I. Bremner, and M. J. Burkitt, “Copper-1,10-phenanthroline induces internucleosomal DNA fragmentation in HepG2 cells, resulting from direct oxidation by the hydroxyl radical,” Biochemical Journal, vol. 317, no. 1, pp. 13–16, 1996. View at Google Scholar · View at Scopus
  37. I. Rahman and W. MacNee, “Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease,” American Journal of Physiology - Lung Cellular and Molecular Physiology, vol. 277, no. 6, pp. L1067–L1088, 1999. View at Google Scholar · View at Scopus
  38. H. J. Forman, H. Zhang, and A. Rinna, “Glutathione: overview of its protective roles, measurement, and biosynthesis,” Molecular Aspects of Medicine, vol. 30, no. 1-2, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Halliwell, “Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biochemical systems?” FEBS Letters, vol. 92, no. 2, pp. 321–326, 1978. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Thomas, M. M. Mackey, A. A. Diaz, and D. P. Cox, “Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation,” Redox Report, vol. 14, no. 3, pp. 102–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. F. L. M. Ricciardolo, P. J. Sterk, B. Gaston, and G. Folkerts, “Nitric oxide in health and disease of the respiratory system,” Physiological Reviews, vol. 84, no. 3, pp. 731–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Guzel, U. N. Basaran, B. Aksu et al., “Protective effects of S-methylisothiourea sulfate on different aspiration materials-induced lung injury in rats,” International Journal of Pediatric Otorhinolaryngology, vol. 72, no. 8, pp. 1241–1250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Lakshminrusimha, M. V. Suresh, and P. R. Knight, “Role of pulmonary artery reactivity and nitric oxide in injury and inflammation following lung contusion,” Shock, vol. 39, no. 3, pp. 278–285, 2013. View at Google Scholar
  45. A. Siddiq, L. R. Aminova, C. M. Troy et al., “Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways,” Journal of Neuroscience, vol. 29, no. 27, pp. 8828–8838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Philipp, L. Cui, B. Ludolph et al., “Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 290, no. 1, pp. H450–H457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. G. L. Semenza, “HIF-1 and human disease: one highly involved factor,” Genes and Development, vol. 14, no. 16, pp. 1983–1991, 2000. View at Google Scholar · View at Scopus
  48. H.-J. Jeong, H.-S. Chung, B.-R. Lee et al., “Expression of proinflammatory cytokines via HIF-1α and NF-κB activation on desferrioxamine-stimulated HMC-1 cells,” Biochemical and Biophysical Research Communications, vol. 306, no. 4, pp. 805–811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Li, Y. Abe, K. Kanagawa et al., “Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals,” Analytica Chimica Acta, vol. 599, no. 2, pp. 315–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Martínez-Romero, E. Martínez-Lara, R. Aguilar-Quesada, A. Peralta, F. J. Oliver, and E. Siles, “PARP-1 modulates deferoxamine-induced HIF-1α accumulation through the regulation of nitric oxide and oxidative stress,” Journal of Cellular Biochemistry, vol. 104, no. 6, pp. 2248–2260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. K. J. Woo, T.-J. Lee, J.-W. Park, and T. K. Kwon, “Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway,” Biochemical and Biophysical Research Communications, vol. 343, no. 1, pp. 8–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. E. Kelly, P. R. Miller, J. J. Greenhaw, T. C. Fabian, and K. G. Proctor, “Novel resuscitation strategy for pulmonary contusion after severe chest trauma,” Journal of Trauma, vol. 55, no. 1, pp. 94–105, 2003. View at Publisher · View at Google Scholar · View at Scopus