Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 402539, 4 pages
http://dx.doi.org/10.1155/2013/402539
Research Article

Compact Ultra Wide Band Microstrip Bandpass Filter Based on Multiple-Mode Resonator and Modified Complementary Split Ring Resonator

1R&D Department, Tafco Metawireless, Polıgono Plazaola, 31195 Aizoain, Spain
2Electrical Engineering Departament, Universidad Publica de Navarra, Campus Arrosadıa, 31006 Pamplona, Spain

Received 20 August 2013; Accepted 26 September 2013

Academic Editors: D. S. Budimir and Y.-S. Lin

Copyright © 2013 J. Antonio Marcotegui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Federal Communications Commission, “Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,” Tech. Rep. ET-Docket 98-153, FCC02-48, 2002. View at Google Scholar
  2. L. H. Hsieh and K. Chang, “Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1241–1246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Ishida and K. Araki, “Design and analysis of UWB bandpass filter with ring filter,” in Proceedings of the IEEE MITT-S International Microwave Symposium Digest, pp. 1307–1310, June 2004. View at Scopus
  4. S. B. Cohn, “Parallel-coupled transmission-line-resonator filter,” IRE Transactions on Microwave Theory and Techniques, vol. 6, no. 2, pp. 223–231, 1958. View at Publisher · View at Google Scholar
  5. L. Zhu, H. Bu, and K. Wu, “Aperture compensation technique for innovative design of ultra-broadband microstrip bandpass filter,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 315–318, Boston, Mass, USA, June 2000. View at Scopus
  6. L. Zhu, W. Menzel, K. Wu, and F. Boegelsack, “Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter,” in Proceedings of the Asia-Pacific Microwave Conference, pp. 625–628, December 2001. View at Scopus
  7. L. Zhu, S. Sun, and W. Menzel, “Ultra-Wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 11, pp. 796–798, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broad-band planar filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 2, pp. 364–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, 2000. View at Google Scholar · View at Scopus
  11. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, 1968. View at Google Scholar
  12. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Physical Review B, vol. 65, no. 14, Article ID 144440, 6 pages, 2002. View at Publisher · View at Google Scholar
  13. R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2572–2581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” Journal of Applied Physics, vol. 92, no. 5, pp. 2929–2936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Falcone, T. Lopetegi, J. D. Baena, R. Marqués, F. Martín, and M. Sorolla, “Effective negative-ε stopband microstrip lines based on complementary split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 280–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Bonache, F. Martín, F. Falcone et al., “Super compact split ring resonators CPW band pass filters,” in Proceedings of the IEEE MITT-S International Microwave Symposium Digest, pp. 1483–1486, Fort Worth, Tex, USA, June 2004. View at Scopus
  17. J. Bonache, I. Gil, J. García-García, and F. Martín, “Novel microstrip bandpass filters based on complementary split-ring resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 265–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Falcone, T. Lopetegi, M. A. G. Laso et al., “Babinet principle applied to the design of metasurfaces and metamaterials,” Physical Review Letters, vol. 93, no. 19, Article ID 197401, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. D. Baena, J. Bonache, F. Martín et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451–1460, 2005. View at Publisher · View at Google Scholar · View at Scopus