Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 421762, 7 pages
http://dx.doi.org/10.1155/2013/421762
Research Article

Performance Evaluation of Volumetric Water Content and Relative Permittivity Models

1Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Department of Civil Engineering, Polytechnic Negeri Semarang, Jl. Prof. Soedarto, SH, Tembalang, Semarang 50275, Indonesia

Received 25 July 2013; Accepted 12 September 2013

Academic Editors: G. Ganjegunte and J. J. Wang

Copyright © 2013 Muhammad Mukhlisin and Almushfi Saputra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Osman and S. S. Barakbah, “Parameters to predict slope stability-Soil water and root profiles,” Ecological Engineering, vol. 28, no. 1, pp. 90–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Mukhlisin, K. Kosugi, Y. Satofuka, and T. Mizuyama, “Effects of soil porosity on slope stability and debris flow runout at a weathered granitic hillslope,” Vadose Zone Journal, vol. 5, no. 1, pp. 283–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Mukhlisin, M. R. Taha, and K. Kosugi, “Numerical analysis of effective soil porosity and soil thickness effects on slope stability at a hillslope of weathered granitic soil formation,” Geosciences Journal, vol. 12, no. 4, pp. 401–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mukhlisin and M. R. Taha, “Slope stability analysis of a weathered granitic hillslope as effects of soil thickness,” European Journal of Scientific Research, vol. 30, no. 1, pp. 36–44, 2009. View at Google Scholar · View at Scopus
  5. M. Mukhlisin, M. R. Baidillah, M. R. Taha, and A. El-Shafie, “Effect of soil water retention model on slope stability analysis,” International Journal of Physical Sciences, vol. 6, no. 19, pp. 4629–4635, 2011. View at Google Scholar · View at Scopus
  6. M. Mukhlisin, I. Idris, W. Z. Wan Yaacob, A. ElShafie, and M. R. Taha, “Soil slope deformation behavior in relation to soil water interaction based on centrifuge physical modeling,” International Journal of Physical Sciences, vol. 6, no. 13, pp. 3126–3133, 2011. View at Google Scholar · View at Scopus
  7. M. Mukhlisin, A. El-Shafie, and M. R. Taha, “Regularized versus non-regularized neural network model for prediction of saturated soil-water content on weathered granite soil formation,” Neural Computing and Applications, vol. 21, no. 3, pp. 543–553, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Mukhlisin and M. R. Taha, “Numerical model of antecedent rainfall effect on slope stability at a hillslope of weathered granitic soil formation,” Journal Geological Society of India, vol. 79, no. 5, pp. 525–531, 2012. View at Publisher · View at Google Scholar
  9. M. Mukhlisin, A. Saputra, A. El-Shafie, and M. R. Taha, “Measurement of dynamic soil water content based on electrochemical capacitance tomography,” International Journal of Electrochemical Science, vol. 7, pp. 5467–5483, 2012. View at Google Scholar
  10. R. Černý, “Time-domain reflectometry method and its application for measuring moisture content in porous materials: a review,” Measurement, vol. 42, no. 3, pp. 329–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. R. Evett and G. W. Parkin, “Advances in soil water content sensing: the continuing maturation of technology and theory,” Vadose Zone Journal, vol. 4, no. 4, pp. 986–991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Huisman, S. S. Hubbard, J. D. Redman, and A. P. Annan, “Measuring soil water content with ground penetrating radar: a review,” Vadose Zone Journal, vol. 2, no. 4, pp. 476–491, 2003. View at Google Scholar · View at Scopus
  13. K. Noborio, “Measurement of soil water content and electrical conductivity by time domain reflectometry: a review,” Computers and Electronics in Agriculture, vol. 31, no. 3, pp. 213–237, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Robinson, S. B. Jones, J. M. Blonquist Jr., and S. P. Friedman, “A physically derived water content/permittivity calibration model for coarse-textured, layered soils,” Soil Science Society of America Journal, vol. 69, no. 5, pp. 1372–1378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Robinson, C. S. Campbell, J. W. Hopmans et al., “Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review,” Vadose Zone Journal, vol. 7, no. 1, pp. 358–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Curtis and R. Narayanan, “Effects of laboratory procedures on soil electrical property measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 6, pp. 1474–1480, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Saarenketo, “Electrical properties of water in clay and silty soils,” Journal of Applied Geophysics, vol. 40, no. 1–3, pp. 73–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. J. O. Curtis, “Moisture effects on the dielectric properties of soils,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 1, pp. 125–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. K. Gardner, T. J. Dean, and J. D. Cooper, “Soil water content measurement with a high-frequency capacitance sensor,” Journal of Agricultural Engineering Research, vol. 71, no. 4, pp. 395–403, 1998. View at Google Scholar · View at Scopus
  20. S. Y. Wu, Q. Y. Zhou, G. Wang, L. Yang, and C. P. Ling, “The relationship between electrical capacitance-based dielectric constant and soil water content,” Environmental Earth Sciences, vol. 62, no. 5, pp. 999–1011, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. H. Roth, M. A. Malicki, and R. Plagge, “Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR,” Journal of Soil Science, vol. 43, no. 1, pp. 1–13, 1992. View at Google Scholar · View at Scopus
  22. G. C. Topp, J. L. Davis, and A. P. Annan, “Electromagnetic determination of soil water content: measurements in coaxial transmission lines,” Water Resources Research, vol. 16, no. 3, pp. 574–582, 1980. View at Google Scholar · View at Scopus
  23. M. A. Malicki, R. Plagge, and C. H. Roth, “Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil,” European Journal of Soil Science, vol. 47, no. 3, pp. 357–366, 1996. View at Google Scholar · View at Scopus
  24. M. C. Dobson, F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes, “Microwave dielectric behavior of wet soil—part II: dielectric mixing models,” IEEE Transactions on Geoscience and Remote Sensing, vol. 23, no. 1, pp. 35–46, 1985. View at Google Scholar · View at Scopus
  25. P. A. Ferré, D. L. Rudolph, and R. G. Kachanoski, “Spatial averaging of water content by time domain reflectometry: implications for twin rod probes with and without dielectric coatings,” Water Resources Research, vol. 32, no. 2, pp. 271–279, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. S. P. Friedman, “A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media,” Water Resources Research, vol. 34, no. 11, pp. 2949–2961, 1998. View at Google Scholar · View at Scopus
  27. M. A. Hilhorst, C. Dirksen, F. W. H. Kampers, and R. A. Feddes, “New dielectric mixture equation for porous materials based on depolarization factors,” Soil Science Society of America Journal, vol. 64, no. 5, pp. 1581–1587, 2000. View at Google Scholar · View at Scopus
  28. K. Roth, R. Schulin, H. Fluhler, and W. Attinger, “Calibration of time domain reflectometry for water content measurement using a composite dielectric approach,” Water Resources Research, vol. 26, no. 10, pp. 2267–2273, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. M. G. Schaap, L. De Lange, and T. J. Heimovaara, “TDR calibration of organic forest floor media,” Soil Technology, vol. 11, no. 2, pp. 205–217, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. J. R. Wang and T. J. Schmugge, “An empirical model for the complex dielectric permittivity of soils as a function of water content,” IEEE Transactions on Geoscience and Remote Sensing, vol. 18, no. 4, pp. 288–295, 1980. View at Google Scholar · View at Scopus
  31. P. Sabouroux and D. Ba, “Epsimu, a tool for dielectric properties measurement of porous media: application in wet granular materials characterization,” Progress In Electromagnetics Research B, no. 29, pp. 191–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Skierucha, A. Wilczek, and O. Alokhina, “Calibration of a TDR probe for low soil water content measurements,” Sensors and Actuators A, vol. 147, no. 2, pp. 544–552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Malicki, R. Plagge, M. Renger, and R. T. Walczak, “Application of time-domain reflectometry (TDR) soil moisture miniprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores,” Irrigation Science, vol. 13, no. 2, pp. 65–72, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Lundien, “Terrain analysis by electromagnetic means,” U.S. Army Engineer Waterways Experiment Station, 1971. View at Google Scholar
  35. R. W. Newton, Terrain Analysis by Electromagnetic Means, Texas A&M University, College Station, Tex, USA, 1977.
  36. J. Wang, T. Schmugge, and D. Williams, “Dielectric constants of soils at microwave frequencies—II,” National Aeronautics and Space Administration, 1978. View at Google Scholar
  37. S. Sharif, “Chemical and mineral composition of dust and its effect on the dielectric constant,” IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 2, pp. 353–359, 1995. View at Publisher · View at Google Scholar · View at Scopus