Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 451629, 13 pages
http://dx.doi.org/10.1155/2013/451629
Research Article

Synthesis Characterization and Antimicrobial Activity Studies of Some Transition Metal Complexes Derived from 3-Chloro-N′-[(1E)-(2-hydroxy phenyl)methylene]-6-methoxy-1-benzothiophene-2-carbohydrazide

Department of Studies and Research in Chemistry, Gulbarga University, Gulbarga-585 106, Karnataka, India

Received 28 August 2013; Accepted 16 September 2013

Academic Editors: E. R. Dockal and D. E. Linn

Copyright © 2013 Vivekanand D. Biradar and B. H. M. Mruthyunjayaswamy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. G. Deshpande and J. R. Shah, “Coordination Polymers. IV. physicochemical studies on chelate polymers of Cr(III), Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) with a schiff base of 4,4′-(4,4′-Biphenylylene Bisazo)di-(salicylaldehyde) with m-Toluidine,” Journal of Macromolecular Science: Part A, vol. 20, no. 3, pp. 355–363, 1983. View at Google Scholar · View at Scopus
  2. F. A. Cotton, Progress in Inorganic Chemistry, vol. 7, Wiley, New York, USA, 1966.
  3. H. Torayama, T. Nishide, H. Asada, M. Fujiwara, and T. Matsushita, “Preparation and characterization of novel cyclic tetranuclear manganese (III) complexes: Mn4III (X-salmphen)6(X-salmphenH2 = N,N′-di-substituted-salicylidene-1,3-diaminobenzene (X = H, 5-Br)),” Polyhedron, vol. 16, no. 21, pp. 3787–3794, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Punniyamurthy, S. J. S. Kalra, and J. Iqbal, “Cobalt(II) catalyzed biomimetic oxidation of hydrocarbons in the presence of dioxygen and 2-methylpropanal,” Tetrahedron Letters, vol. 36, no. 46, pp. 8497–8500, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. Chavan and P. P. Hankare, “X-ray diffraction studies of Ni(II), Cu(II) and Zn (II) complexes with 2-[2′-hydroxysalicylidene-5′-(2-thiazolylazo)]phenol,” Journal of the Indian Chemical Society, vol. 82, no. 6, pp. 494–496, 2005. View at Google Scholar · View at Scopus
  6. Z. H. Chohan, M. Praveen, and A. Ghaffar, “Synthesis, characterisation and biological role of anions (Nitrate, Sulphate, Oxalate and Acetate) in Co(II), Cu(II) and Ni(II) metal chelates of some Schiff base derived Amino Acids,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 28, no. 10, pp. 1673–1687, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. B.-L. Chen, K.-F. Mok, S.-C. Ng, and M. G. B. Drew, “Syntheses, structures and properties of copper(II) complexes with thiophene-2,5-dicarboxylic acid (H2Tda) and nitrogen-containing ligands,” Polyhedron, vol. 18, no. 8-9, pp. 1211–1220, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Abele and E. Lukevics, “Synthesis of sterically hindered heteroaromatic ketones under phase-transfer and metal-complex catalysis conditions,” Chemistry of Heterocyclic Compounds, vol. 37, no. 1, pp. 5–14, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. T. A. Farghaly and Z. A. Abdallah, “Synthesis, azo-hydrazone tautomerism and antitumor screening of N-(3-ethoxycarbonyl-4,5,6,7-tetrahydro-benzo[b]thien-2-yl)-2-arylhydrazono-3- oxobutanamide derivatives,” Arkivoc, vol. 2008, no. 17, pp. 295–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. Vasoya, D. J. Paghdar, P. T. Chovatia, and H. S. Joshi, “Synthesis of some new thiosemicarbazide and 1, 3, 4-thiadiazole hetrocycles bearing benzo[b]thiophene nucleus as a potent antitubercular and antimicrobial agents,” Journal of Sciences Islamic Republic of Iran, vol. 16, no. 1, pp. 33–36, 2005. View at Google Scholar
  11. Y. Jadegoud, O. B. Ijare, N. N. Mallikarjuna, S. D. Angadi, and B. H. M. Mruthyunjayaswamy, “Synthesis and antimicrobial activity of copper, cobalt and nickel(II) complexes with Schiff bases,” Journal of the Indian Chemical Society, vol. 79, no. 12, pp. 921–924, 2002. View at Google Scholar · View at Scopus
  12. B. H. M. Mruthyunjayaswamy, Y. Jadegoud, O. B. Ijare, S. G. Patil, and S. M. Kudari, “Synthesis, characterization and antimicrobial activity of macrocylic phenoxo-bridged di and tetra-nuclear complexes from N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]succinoyl/sebacoyldicarboxamides,” Transition Metal Chemistry, vol. 30, no. 2, pp. 234–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. H. M. Mruthyunjayaswamy, O. B. Ijare, and Y. Jadegoud, “Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand,” Journal of the Brazilian Chemical Society, vol. 16, no. 4, pp. 783–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Jadegoud, O. B. Ijare, B. S. Somashekar, G. A. N. Gowda, and B. H. M. Mruthyunjayaswamy, “Synthesis, characterization and antimicrobial activity of homodinuclear complexes derived from 2,6-bis[3′-methyl-2′-carboxamidyliminomethyl(6′,7′)benzindole]-4-methylphenol, an end-off compartmental ligand,” Journal of Coordination Chemistry, vol. 61, no. 4, pp. 508–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Rahaman, B. Hiremath, S. M. Basavarajaiah, B. H. M. Jayakumarswamy, and B. H. M. Mruthyunjayaswamy, “Synthetic, spectral, thermal and antimicrobial activity studies of some transition metal complexes derived from 2-hydroxy-methylbenzaldehyde N-(4′-phenyl-1′,3′-thiazol-2′-yl)semicarbazone,” Journal of the Indian Chemical Society, vol. 85, no. 4, pp. 381–386, 2008. View at Google Scholar · View at Scopus
  16. F. Rahaman, O. B. Ijare, Y. Jadegoud, and B. H. M. Mruthyunjayaswamy, “Phenoxo-bridged symmetrical homobinuclear complexes derived from an “end-off” compartmental ligand, 2,6-bis[5′-chloro-3′-phenyl-1H-indole-2′-carboxamidyliminomethyl]-4-methylphenol,” Journal of Coordination Chemistry, vol. 62, no. 9, pp. 1457–1467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. I. Vogel, A Text Book Quantitative Organic Analysised, 3rd edition, 1962.
  18. S. P. Hiremath, K. Shivaramayya, and M. G. Purohit, “Synthesis of substituted 2,5-bis(Oxadiazolyl/Thiazolidino/Pyrazolyl/Pyrimidinediono) indoles and Oxadiazolyl/Thiadiazolyl/Triazolyl/Thiazolidinone analogs of Benzothiophene and their antibacterial activity,” Indian Journal of Heterocyclic Chemistry, vol. 1, pp. 177–184, 1992. View at Google Scholar
  19. A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman ELBS, London, UK, 3rd edition, 1968.
  20. C. J. O'Connor, E. Sinn, E. J. Cukauskas, and B. S. Deaver Jr., “Low temperature magnetic properties and antiferromagnetic interactions of the magnetic susceptibility calibrant HgCo(NCS)4,” Inorganica Chimica Acta, vol. 32, no. C, pp. 29–32, 1979. View at Google Scholar · View at Scopus
  21. A. L. Barry, The Antimicrobial Susceptibility Test, Principles and Practices, E.L.B.S, 4th edition, 1976.
  22. M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Molyneux, “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity,” The Songklanakarin Journal of Science and Technology, vol. 26, pp. 211–219, 2004. View at Google Scholar
  24. G. Topçua, A. Ertas, U. Kolak, M. Öztürk, and A. Ulubelen, “Antioxidant activity tests on novel triterpenoids from Salvia macrochlamys,” Arkivoc, vol. 7, pp. 195–208, 2007. View at Google Scholar
  25. J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA, 2nd edition, 1989.
  26. A. A. A. Abu-Hussen, “Synthesis and spectroscopic studies on ternary bis-Schiff-base complexes having oxygen and/or nitrogen donors,” Journal of Coordination Chemistry, vol. 59, no. 2, pp. 157–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. N. K. Singh, S. B. Singh, A. Shrivastav, and S. M. Singh, “Spectral, magnetic and biological studies of l,4-dibenzoyl-3-thiosemicarbazide complexes with some first row transition metal ions,” Journal of Chemical Sciences, vol. 113, no. 4, pp. 257–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. N. K. Singh and S. B. Singh, “Synthesis, characterization and biological properties of manganese(II), cobalt(II), nickel(II), copper(II), zinc(II), chromium(III) and iron(III) complexes with a new thiosemicarbazide derivative,” Indian Journal of Chemistry: Section A, vol. 40, no. 10, pp. 1070–1075, 2001. View at Google Scholar · View at Scopus
  29. C. N. R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, NY, USA, 1963.
  30. G. M. Shashidhara and T. R. Goudar, “Synthesis of Uranium(IV) complexes of Schiff bases,” Journal of the Indian Chemical Society, vol. 78, no. 7, pp. 360–361, 2001. View at Google Scholar · View at Scopus
  31. M. K. Patel, N. H. Patel, K. N. Patel, and M. N. Patel, “Synthesis, structural characterization and biocidal studies of Cu(II), Ni(II), Zn(II), Co(II), Fe(II), Mn(II) and Cd(II) complexes derived from Schiff bases (ONO) and bidentate (NN) heterocycle,” Journal of Indian Council of Chemists, vol. 17, no. 1, pp. 19–24, 2000. View at Google Scholar
  32. S. Chandra and K. Gupta, “Synthesis and spectral studies on chromium(III), manganese(II), iron(III), cobalt(II), nickel(II) and copper(II) complexes of fourteen-membered and sixteen membered tetradentate macrocyclic ligands,” Indian Journal of Chemistry: Section A, vol. 40, no. 7, pp. 775–779, 2001. View at Google Scholar · View at Scopus
  33. D. Nicolas, J. C. Bailar Jr., H. J. Emelens, and R. S. Nyloms, Comprehnsive Inorganic Chemistry, 5th edition, 1973.
  34. J. L. Tian, E. Q. Gao, Y. T. Li, and S. X. Liu, “Synthesis and characterization of Glyoxalic Acid Thiosemicarbazone complexes of some Bivalent metal Ions,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 25, no. 3, pp. 417–427, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. L. K. Mishra, Y. Jha, B. K. Sinha, R. Kant, and R. Singh, “Studies of chelates of cobalt-, nickel-, copper-, zinc- and cadmium(II) with 4-amino-3,5-dioxo-6-methyl-2,3,4,5-tetrahydro-1,2,4-triazine,” Journal of the Indian Chemical Society, vol. 76, no. 2, pp. 65–66, 1999. View at Google Scholar · View at Scopus
  36. M. Melník, I. Potočňak, L. Macášková, D. Mikloš, and C. E. Holloway, “Spectral study of copper(II) flufenamates: crystal and molecular structure of biis(Flufenamato)di(N,N-diethylnicotinamide)di(Aqua)copper(II),” Polyhedron, vol. 15, no. 13, pp. 2159–2164, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. B. J. Hathaway and A. A. G. Tomlinson, “Copper(II) ammonia complexes,” Coordination Chemistry Reviews, vol. 5, no. 1, pp. 1–43, 1970. View at Publisher · View at Google Scholar · View at Scopus