Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 465723, 8 pages
http://dx.doi.org/10.1155/2013/465723
Research Article

Exp-Function Method for Solving Fractional Partial Differential Equations

School of Science, Shandong University of Technology, Zibo, Shandong 255049, China

Received 16 April 2013; Accepted 19 May 2013

Academic Editors: J. Fernández and J. Liu

Copyright © 2013 Bin Zheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Song and H. Zhang, “New exact solutions for the Konopelchenko-Dubrovsky equation using an extended Riccati equation rational expansion method and symbolic computation,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 1373–1388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Li and H. Zhang, “Generalized multiple Riccati equations rational expansion method with symbolic computation to construct exact complexiton solutions of nonlinear partial differential equations,” Applied Mathematics and Computation, vol. 197, no. 1, pp. 288–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Liu, Z. Fu, S. Liu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Yan, “Abundant families of Jacobi elliptic function solutions of the (2 + 1)-dimensional integrable Davey-Stewartson-type equation via a new method,” Chaos, Solitons and Fractals, vol. 18, no. 2, pp. 299–309, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Wang and X. Li, “Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation,” Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1257–1268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. He and X. H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp. 700–708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. He and L. N. Zhang, “Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method,” Physics Letters A, vol. 372, no. 7, pp. 1044–1047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. X. H. Wu and J. H. He, “Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method,” Computers and Mathematics with Applications, vol. 54, no. 7-8, pp. 966–986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. He and M. A. Abdou, “New periodic solutions for nonlinear evolution equations using Exp-function method,” Chaos, Solitons and Fractals, vol. 34, no. 5, pp. 1421–1429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Wang, X. Li, and J. Zhang, “The (G/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,” Physics Letters A, vol. 372, no. 4, pp. 417–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Wang, J. Zhang, and X. Li, “Application of the fenced(G/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations,” Applied Mathematics and Computation, vol. 206, no. 1, pp. 321–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. A. El-Sayed and M. Gaber, “The Adomian decomposition method for solving partial differential equations of fractal order in finite domains,” Physics Letters A, vol. 359, no. 3, pp. 175–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. A. El-Sayed, S. H. Behiry, and W. E. Raslan, “Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1759–1765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. He, “A new approach to nonlinear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 230–235, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. G. C. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters A, vol. 374, no. 25, pp. 2506–2509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Guo and L. Mei, “The fractional variational iteration method using He's polynomials,” Physics Letters A, vol. 375, no. 3, pp. 309–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Google Scholar · View at Scopus
  18. J. H. He, “Coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Odibat and S. Momani, “A generalized differential transform method for linear partial differential equations of fractional order,” Applied Mathematics Letters, vol. 21, no. 2, pp. 194–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Cui, “Compact finite difference method for the fractional diffusion equation,” Journal of Computational Physics, vol. 228, no. 20, pp. 7792–7804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Huang, G. Huang, and H. Zhan, “A finite element solution for the fractional advection-dispersion equation,” Advances in Water Resources, vol. 31, no. 12, pp. 1578–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Zhang and H. Q. Zhang, “Fractional sub-equation method and its applications to nonlinear fractional PDEs,” Physics Letters A, vol. 375, no. 7, pp. 1069–1073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Guo, L. Q. Mei, Y. Li, and Y. F. Sun, “The improved fractional sub-equation method and its applications to the spaceCtime fractional differential equations in fluid mechanics,” Physics Letters A, vol. 376, pp. 407–411, 2012. View at Google Scholar
  24. B. Lu, “Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations,” Physics Letters A, vol. 376, pp. 2045–2048, 2012. View at Google Scholar
  25. G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers and Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Lu, “The first integral method for some time fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 395, pp. 684–693, 2012. View at Google Scholar
  27. L. N. Song, Q. Wang, and H. Q. Zhang, “Rational approximation solution of the fractional SharmaCTassoCOlever equation,” Journal of Computational and Applied Mathematics, vol. 224, pp. 210–218, 2009. View at Google Scholar