Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 481975, 8 pages
http://dx.doi.org/10.1155/2013/481975
Research Article

A Model of Implant-Associated Infection in the Tibial Metaphysis of Rats

1Department of Orthopaedics, University Medicine Rostock, Doberaner Straße 142, 18057 Rostock, Germany
2Institute of Medical Microbiology, Virology and Hygiene, University Rostock, Schillingallee 70, 18057 Rostock, Germany

Received 18 July 2013; Accepted 18 August 2013

Academic Editors: S.-Y. Kim and M. S. Lee

Copyright © 2013 Maximilian Haenle et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Haenle, C. Skripitz, W. Mittelmeier, and R. Skripitz, “Economic impact of infected total hip arthroplasty in the German diagnosis-related groups system,” Orthopade, vol. 41, 6, pp. 467–476, 2012. View at Publisher · View at Google Scholar
  2. M. Haenle, C. Skripitz, W. Mittelmeier, and R. Skripitz, “Economic impact of infected total knee arthroplasty,” The Scientific World Journal, vol. 2012, Article ID 196515, 6 pages, 2012. View at Publisher · View at Google Scholar
  3. S. M. Kurtz, E. Lau, H. Watson, J. K. Schmier, and J. Parvizi, “Economic burden of periprosthetic joint infection in the United States,” Journal of Arthroplasty, vol. 27, no. 8, pp. 61.e1–65.e1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Kurtz, E. Lau, J. Schmier, K. L. Ong, K. Zhao, and J. Parvizi, “Infection burden for hip and knee arthroplasty in the United States,” Journal of Arthroplasty, vol. 23, no. 7, pp. 984–991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Del Pozo and R. Patel, “Infection associated with prosthetic joints,” The New England Journal of Medicine, vol. 361, no. 8, pp. 787–794, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. G. Gristina and J. W. Costerton, “Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis,” Journal of Bone and Joint Surgery A, vol. 67, no. 2, pp. 264–273, 1985. View at Google Scholar · View at Scopus
  7. A. G. Gristina, M. Oga, L. X. Webb, and C. D. Hobgood, “Adherent bacterial colonization in the pathogenesis of ostomyelitis,” Science, vol. 228, no. 4702, pp. 990–993, 1985. View at Google Scholar · View at Scopus
  8. M. Habash and G. Reid, “Microbial biofilms: their development and significance for medical device-related infections,” Journal of Clinical Pharmacology, vol. 39, no. 9, pp. 887–898, 1999. View at Google Scholar · View at Scopus
  9. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott, “Microbial biofilms,” Annual Review of Microbiology, vol. 49, pp. 711–745, 1995. View at Google Scholar · View at Scopus
  10. D. G. Davies, M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg, “The involvement of cell-to-cell signals in the development of a bacterial biofilm,” Science, vol. 280, no. 5361, pp. 295–298, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Evans, M. R. W. Brown, D. G. Allison, and P. Gilbert, “Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycle,” Journal of Antimicrobial Chemotherapy, vol. 25, no. 4, pp. 585–591, 1990. View at Google Scholar · View at Scopus
  12. J. Parvizi, B. Bender, K. J. Saleh, T. E. Brown, T. P. Schmalzried, and W. M. Mihalko, “Resistant organisms in infected total knee arthroplasty: occurrence, prevention, and treatment regimens,” Instructional Course Lectures, vol. 58, pp. 271–278, 2009. View at Google Scholar · View at Scopus
  13. D. Ip, S. K. Yam, and C. K. Chen, “Implications of the changing pattern of bacterial infections following total joint replacements,” Journal of Orthopaedic Surgery, vol. 13, no. 2, pp. 125–130, 2005. View at Google Scholar · View at Scopus
  14. M. Haenle, A. Podbielski, M. Ellenrieder et al., “Periprosthetic infections following total hip replacement with ESBL-forming bacteria: importance for clinical practice,” Orthopade, vol. 40, no. 6, pp. 528–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Martínez-Pastor, F. Vilchez, C. Pitart, J. M. Sierra, and A. Soriano, “Antibiotic resistance in orthopaedic surgery: acute knee prosthetic joint infections due to extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, no. 8, pp. 1039–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Haenle, A. Fritsche, C. Zietz et al., “An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 2, pp. 381–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Schmidmaier, M. Lucke, B. Wildemann, N. P. Haas, and M. Raschke, “Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review,” Injury, vol. 37, supplement 2, pp. S105–S112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Å. Johansson, J. U. Lindgren, C. E. Nord, and O. Svensson, “Local plate infections in a rabbit model,” Injury, vol. 30, no. 9, pp. 587–590, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Kälicke, U. Schlegel, C. Kraft, C. Wingenfeld, G. Muhr, and S. Arens, “Animal models of osteomyelitis,” Orthopade, vol. 33, no. 3, pp. 260–266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Monzón, F. García-Álvarez, A. Laclériga et al., “A simple infection model using pre-colonized implants to reproduce rat chronic Staphylococcus aureus osteomyelitis and study antibiotic treatment,” Journal of Orthopaedic Research, vol. 19, no. 5, pp. 820–826, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Lucke, G. Schmidmaier, S. Sadoni et al., “A new model of implant-related osteomyelitis in rats,” Journal of Biomedical Materials Research B, vol. 67, no. 1, pp. 593–602, 2003. View at Google Scholar · View at Scopus
  22. N. M. Bernthal, A. I. Stavrakis, F. Billi et al., “A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings,” PLoS ONE, vol. 5, no. 9, Article ID e12580, 2010. View at Google Scholar · View at Scopus
  23. G. D. Christensen, L. Baldassarri, and W. A. Simpson, “Methods for studying microbial colonization of plastics,” Methods in Enzymology, vol. 253, pp. 477–500, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Gollwitzer, K. Ibrahim, H. Meyer, W. Mittelmeier, R. Busch, and A. Stemberger, “Antibacterial poly(D,L-lactic acid) coating of medical implants using a biodegradable drug delivery technology,” Journal of Antimicrobial Chemotherapy, vol. 51, no. 3, pp. 585–591, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Alt, A. Bitschnau, J. Österling et al., “The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model,” Biomaterials, vol. 27, no. 26, pp. 4627–4634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Arens, C. Kraft, U. Schlegel, G. Printzen, S. M. Perren, and M. Hansis, “Susceptibility to local infection in biological internal fixation. Experimental study of open vs minimally invasive plate osteosynthesis in rabbits,” Archives of Orthopaedic and Trauma Surgery, vol. 119, no. 1-2, pp. 82–85, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. U. Geipel and M. Herrmann, “The infected implant—part 1: bacteriology,” Orthopade, vol. 33, no. 12, pp. 1411–1428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Perka and N. Haas, “Periprosthetic infection,” Der Chirurg, vol. 82, no. 3, pp. 218–226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Frommelt, “Aspiration of joint fluid for detection of the pathogen in periprosthetic infection,” Orthopade, vol. 37, no. 10, pp. 1027–1036, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Aerssens, S. Boonen, G. Lowet, and J. Dequeker, “Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research,” Endocrinology, vol. 139, no. 2, pp. 663–670, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Novick, “Growth of bacteria,” Annual Review of Microbiology, vol. 9, pp. 97–110, 1955. View at Publisher · View at Google Scholar
  32. F. H. Kayser and E. C. Böttger, “Algemeine Bakteriologie,” in Taschenlehrbuch Medizinische Mikrobiologie, F. H. Kayser, E. C. Böttger, R. M. Zinkernagel, O. Haller, J. Eckert, and P. Deplazes, Eds., pp. 162–244, Thieme, Stuttgart, Germany, 12th edition, 2010. View at Google Scholar
  33. A. F. Widmer, “New developments in diagnosis and treatment of infection in orthopedic implants,” Clinical Infectious Diseases, vol. 33, supplement 2, pp. S94–S106, 2001. View at Google Scholar · View at Scopus