Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 513867, 10 pages
http://dx.doi.org/10.1155/2013/513867
Research Article

UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens

1Plant Sciences Department, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996, USA
2Department of Food Science and Technology, The University of Tennessee, 2605 River Drive, Knoxville, TN 37996, USA
3Department of Agriculture, Illinois State University, Normal, IL 61790, USA

Received 1 February 2013; Accepted 3 March 2013

Academic Editors: L. Fodorpataki, M. C. Martínez-Ballesta, and B. Muries

Copyright © 2013 Kristin R. Abney et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μmol·m−2·s−2 (2.68 W·m−2)] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values.