Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 519858, 10 pages
http://dx.doi.org/10.1155/2013/519858
Research Article

Chemical Constituents Antioxidant and Anticholinesterasic Activity of Tabernaemontana catharinensis

1Instituto de Biotecnologia, Universidade de Caxias do Sul, Francisco G. Vargas 1130, 95001-970 Caxias do Sul, RS, Brazil
2Centro Tecnológico, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas 1130, Petrópolis, 95070-560 Caxias do Sul, RS, Brazil

Received 15 May 2013; Accepted 19 June 2013

Academic Editors: M. Makishima and G. Marucci

Copyright © 2013 Carla Nicola et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Mattson, “Pathways towards and away from Alzheimer's disease,” Nature, vol. 430, no. 7000, pp. 631–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Verri, O. Pastoris, M. Dossena et al., “Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer disease,” International Journal of Immunopathology and Pharmacology, vol. 25, no. 2, pp. 345–353, 2012. View at Google Scholar
  3. M. B. H. Youdim and J. J. Buccafusco, “Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders,” Trends in Pharmacological Sciences, vol. 26, no. 1, pp. 27–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. N. Matozinhos and T. U. P. Konno, “Diversidade taxônomica de Apocynaceae na Serra Negra, MG, Brasil,” Hoehnea, vol. 38, no. 4, pp. 569–596, 2011. View at Google Scholar
  5. E. Federici, G. Palazzino, M. Nicoletti, and C. Galeffi, “Antiplasmodial activity of the alkaloids of Peschiera fuchsiaefolia,” Planta Medica, vol. 66, no. 1, pp. 93–95, 2000. View at Google Scholar · View at Scopus
  6. V. Munoz, C. Moretti, M. Sauvain et al., “Isolation of bis-indole alkaloids with antileishmanial and antibacterial activities from Peschiera van heurkii,” Planta Medica, vol. 60, no. 5, pp. 455–459, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Mansoor, S. Dewanjee, P. M. Borralho, S. Mulhovo, C. M. P. Rodrigues, and M. J. U. Ferreira, “Cytotoxic alkaloids from the roots of Tabernaemontan elegans,” Planta Medica, vol. 78, no. 11, article 177, 2012. View at Publisher · View at Google Scholar
  8. C. G. Pereira, P. F. Leal, D. N. Sato, and M. A. A. Meireles, “Antioxidant and antimycobacterial activities of Tabernaemoniana catharinensis extracts obtained by supercritical CO2 + cosolvent,” Journal of Medicinal Food, vol. 8, no. 4, pp. 533–538, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. I. J. C. Vieira, W. L. B. Medeiros, C. S. Monnerat et al., “Two fast screening methods (GC-MS and TLC-ChEI assay) for rapid evaluation of potential anticholinesterasic indole alkaloids in complex mixtures,” Anais da Academia Brasileira de Ciencias, vol. 80, no. 3, pp. 419–426, 2008. View at Google Scholar · View at Scopus
  10. T. Taesotikul, A. Panthong, D. Kanjanapothi, R. Verpoorte, and J. J. C. Scheffer, “Anti-inflammatory, antipyretic and antinociceptive activities of Tabernaemontana pandacaqui Poir,” Journal of Ethnopharmacology, vol. 84, no. 1, pp. 31–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Guida, G. de Battista, and S. Bargardi, “The antibacterial activity of alkaloids obtained from Tabernaemontana catharinensis A.DC,” Ars Pharmaceutica, vol. 44, no. 2, pp. 167–173, 2003. View at Google Scholar · View at Scopus
  12. A. E. Gower, B. D. S. Pereira, and A. J. Marsaioli, “Indole alkaloids from Peschiera campestris,” Phytochemistry, vol. 25, no. 12, pp. 2908–2910, 1986. View at Google Scholar · View at Scopus
  13. M. B. H. Youdim and J. J. Buccafusco, “Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders,” Trends in Pharmacological Sciences, vol. 26, no. 1, pp. 27–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Google Scholar · View at Scopus
  15. A. Raza, A. Saeed, A. Ibrar, M. Muddassar, A. A. Khan, and J. Iqbal, “Pharmacological evaluation and docking studies of 3-thiadiazol and thioxo 1, 2, 4-triazolylcoumarin derivates as cholinesterase inhibitors,” ISRN Pharmacology, vol. 2012, Article ID 707932, 11 pages, 2012. View at Publisher · View at Google Scholar
  16. M. D. López and M. J. Pascual-Villalobos, “Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control,” Industrial Crops and Products, vol. 31, no. 2, pp. 284–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Zocoler, A. J. B. de Oliveira, M. H. Sarragiotto, V. L. Grzesiuk, and G. J. Vidotti, “Qualitative determination of indole alkaloids of Tabernaemontana fuchsiaefolia (Apocynaceae),” Journal of the Brazilian Chemical Society, vol. 16, no. 6, pp. 1372–1377, 2005. View at Google Scholar · View at Scopus
  18. T. A. van Beek, F. L. C. Kuijlaars, P. H. A. M. Thomassen, R. Verpoorte, and A. Baerheim Svendsen, “Antimicrobially active alkaloids from Tabernaemontana pachysiphon,” Phytochemistry, vol. 23, no. 8, pp. 1771–1778, 1984. View at Google Scholar · View at Scopus
  19. R. Munigunti, V. Mulabagal, and A. I. Calderón, “Screening of natural compounds for ligands to PfTrxR by ultrafiltration and LC-MS based binding assay,” Journal of Pharmaceutical and Biomedical Analysis, vol. 55, no. 2, pp. 265–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. S. Pereira, S. C. França, P. V. A. Oliveira, C. M. S. Breves, and S. I. V. P. Pereira, “Chemical constituents from T. catharinensis root bark: a brief NMR review of índole alkaloids and in vitro cytotoxicity,” Quimica Nova, vol. 31, pp. 20–24, 2008. View at Google Scholar
  21. T. A. van Beek, R. Verpoorte, and A. B. Svendsen, “Tabernaemontana L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology,” Journal of Ethnopharmacology, vol. 10, no. 1, pp. 1–156, 1984. View at Google Scholar · View at Scopus
  22. F. Lépine, S. Milot, L. Zamir, and R. Morel, “Liquid chromatographic/mass spectrometric determination of biologically active alkaloids in extracts of Peschiera fuschiaefolia,” Journal of Mass Spectrometry, vol. 37, no. 2, pp. 216–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. R. M. Silverstein, Identificação espectrométrica de compostos orgânicos, LTC, Rio de Janeiro, Brazil, 7th edition, 2006.
  24. M. T. Andrade, J. A. Lima, A. C. Pinto, C. M. Rezende, M. P. Carvalho, and R. A. Epifanio, “Indole alkaloids from Tabernaemontana australis (Müell. Arg) Miers that inhibit acetylcholinesterase enzyme,” Bioorganic and Medicinal Chemistry, vol. 13, no. 12, pp. 4092–4095, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Azoug, A. Loukaci, B. Richard et al., “Alkaloids from stem bark and leaves of Peschiera buchtieni,” Phytochemistry, vol. 39, no. 5, pp. 1223–1228, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Rastogi, R. S. Kapil, and S. P. Popli, “New alkaloids from Tabernaemontana divaricata,” Phytochemistry, vol. 19, no. 6, pp. 1209–1212, 1980. View at Google Scholar · View at Scopus
  27. S. Srivastava, M. M. Singh, and D. K. Kulshreshtha, “A new alkaloid and other anti-implantation principles from Tabernaemontana heyneana,” Planta Medica, vol. 67, no. 6, pp. 577–579, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. C. G. Pereira, J. E. Carvalho, and M. A. A. Meireles, “Anticancer activity of Tabernaemontana catharinensis extract obtained by supercritical fluid extraction,” Revista Brasileira de Plantas Medicinais, vol. 8, no. 4, pp. 144–149, 2006. View at Google Scholar
  29. D. C. Soares, C. G. Pereira, M. A. A. Meireles, and E. M. B. Saraiva, “Anti-Leishmania amazonensis activity of supercritical CO2 + ethanol extracts from Tabernaemontana catharinensis,” Parasitology International, vol. 56, no. 2, pp. 135–139, 2007. View at Google Scholar
  30. T. Yamaguchi, H. Takamura, T. Matoba, and J. Terao, “HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl,” Bioscience, Biotechnology and Biochemistry, vol. 62, no. 6, pp. 1201–1204, 1998. View at Google Scholar · View at Scopus
  31. Z. Cheng, J. Moore, and L. Yu, “High-throughput relative DPPH radical scavenging capacity assay,” Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7429–7436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. Santos, T. S. Magalhães, F. J. Monte, and C. de Mattos, “Alcalóides iboga de Peschiera affinis atribuição inequívoca dos deslocamentos químicos dos átomos de hidrogênio e carbono e atividade antioxidante,” Quimica Nova, vol. 32, no. 7, pp. 1834–1838, 2009. View at Google Scholar
  33. T. Sathishkumar and R. Baskar, “Evaluation of antioxidant properties of Tabernaemontana heyneana wall leaves,” Indian Journal of Natural Products and Resources, vol. 3, no. 2, pp. 197–207, 2012. View at Google Scholar
  34. V. Fragoso, N. C. D. Nascimento, D. J. Moura et al., “Antioxidant and antimutagenic properties of the monoterpene indole alkaloid psychollatine and the crude foliar extract of Psychotria umbellata Vell,” Toxicology In Vitro, vol. 22, no. 3, pp. 559–566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. S. Estevão, L. C. Carvalho, L. M. Ferreira, E. Fernandes, and M. M. B. Marques, “Analysis of the antioxidant activity of the indole library: cyclic voltammetry versus ROS scavening activity,” Tetrahedron Letters, vol. 52, pp. 101–106, 2011. View at Google Scholar
  36. S. Chattipakorn, A. Pongpanparadorn, W. Pratchayasakul, A. Pongchaidacha, K. Ingkaninan, and N. Chattipakorn, “Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats,” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 61–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. J. Zhan, Q. Yu, Z. L. Wang, and W. G. Shan, “Indole alkaloids from Ervatamia hainanensis with potent acetylcholinesterase inhibition activities,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 21, pp. 6185–6187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. T. Khan, I. Orhan, F. S. Senol et al., “Cholinesterase inhibitory activities of some flavonoid derivates and chosen xanthone and their molecular docking studies,” Chemico-Biological Interactions, vol. 181, no. 3, pp. 383–389, 2009. View at Google Scholar
  39. H. Dvir, I. Silman, M. Harel, T. L. Rosenberry, and J. L. Sussman, “Acetylcholinesterase: from 3D structure to function,” Chemico-Biological Interactions, vol. 187, no. 1–3, pp. 10–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Harel, I. Schalk, L. Ehret-Sabatier et al., “Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 9031–9035, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. C. H. R. King, H. Meckler, R. J. Herr, M. P. Trova, S. D. Glick, and I. M. Maisonneuve, “Synthesis of enantiomerically pure (+)- and (-)-18-methoxycoronaridine hydrochloride and their preliminary assessment as anti-addictive agents,” Bioorganic and Medicinal Chemistry Letters, vol. 10, no. 5, pp. 473–476, 2000. View at Publisher · View at Google Scholar · View at Scopus