Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 524239, 15 pages
http://dx.doi.org/10.1155/2013/524239
Review Article

Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

Department of Geology and Soil Science, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic

Received 1 August 2013; Accepted 15 September 2013

Academic Editors: M. Dunn and G. Liu

Copyright © 2013 Valerie Vranova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Jones, “Organic acids in the rhizosphere—a critical review,” Plant and Soil, vol. 205, no. 1, pp. 25–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Jones, T. Eldhuset, H. A. De Wit, and B. Swensen, “Aluminium effects on organic acid mineralization in a Norway spruce forest soil,” Soil Biology and Biochemistry, vol. 33, no. 9, pp. 1259–1267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Asao, K. Hasegawa, Y. Sueda et al., “Autotoxicity of root exudates from taro,” Scientia Horticulturae, vol. 97, no. 3-4, pp. 389–396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Huang, Z. Zhao, and W. Chen, “Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals,” Chemosphere, vol. 52, no. 3, pp. 571–579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Fransson, S. Vinogradoff, D. L. Godbold, P. A. W. Van Hees, and D. L. Jones, “Aluminum complexation suppresses citrate uptake by acid forest soil microorganisms,” Soil Biology and Biochemistry, vol. 36, no. 2, pp. 353–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. W. Van Hees, D. L. Jones, L. Nyberg, S. J. M. Holmström, D. L. Godbold, and U. S. Lundström, “Modelling low molecular weight organic acid dynamics in forest soils,” Soil Biology and Biochemistry, vol. 37, no. 3, pp. 517–531, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Z.-A. Li, B. Zou, H.-P. Xia, Y.-Z. Ding, W.-N. Tan, and S.-L. Fu, “Role of low-molecule-weight organic acids and their salts in regulating soil ph1 1 project supported by the national natural science foundation of china (Nos. 30670393 and 30630015), the knowledge innovation program of the chinese academy of sciences (No. KSCX2-SW-133), the science and technology planning of guangdong province (No. 2006A36703004),” Pedosphere, vol. 18, no. 2, pp. 137–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. An, G. Huang, H. Yu, J. Wei, W. Chen, and G. Li, “Effect of short-chain organic acids and pH on the behaviors of pyrene in soil-water system,” Chemosphere, vol. 81, no. 11, pp. 1423–1429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Gómez, L. Buela, L. T. Castro, V. Chaparro, M. M. Ball, and L. A. Yarzábal, “Evidence for gluconic acid production by Enterobacter intermedium as an efficient strategy to avoid protozoan grazing,” Soil Biology and Biochemistry, vol. 42, no. 5, pp. 822–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Aulakh, R. Wassmann, C. Bueno, J. Kreuzwieser, and H. Rennenberg, “Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars,” Plant Biology, vol. 3, no. 2, pp. 139–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Nehls, N. Grunze, M. Willmann, M. Reich, and H. Küster, “Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis,” Phytochemistry, vol. 68, no. 1, pp. 82–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Kantar, Z. Cetin, and H. Demiray, “In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids,” Journal of Hazardous Materials, vol. 159, no. 2-3, pp. 287–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. C. Ball, M. V. Cheshire, E. A. G. Robertson, and E. A. Hunter, “Carbohydrate composition in relation to structural stability, compactibility and plasticity of two soils in a long-term experiment,” Soil and Tillage Research, vol. 39, no. 3-4, pp. 143–160, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Solomon, J. Lehmann, and W. Zech, “Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates,” Agriculture, Ecosystems and Environment, vol. 78, no. 3, pp. 203–213, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Merilä, M. Malmivaara-Lämsä, P. Spetz et al., “Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest,” Applied Soil Ecology, vol. 46, no. 2, pp. 259–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. S. Radwan and A. S. Al-Muteirie, “Vitamin requirements of hydrocarbon-utilizing soil bacteria,” Microbiological Research, vol. 155, no. 4, pp. 301–307, 2001. View at Google Scholar · View at Scopus
  17. H. G. Pushpalatha, S. R. Mythrashree, R. Shetty et al., “Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet,” Crop Protection, vol. 26, no. 11, pp. 1674–1681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. E. Taga and G. C. Walker, “Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host,” Molecular Plant-Microbe Interactions, vol. 23, no. 12, pp. 1643–1654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Jonsson and T. L. Östberg, “The effects of carbon sources and micronutrients in whey and fermented whey on the kinetics of phenanthrene biodegradation in diesel contaminated soil,” Journal of Hazardous Materials, vol. 192, no. 3, pp. 1171–1177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Shen, L. Ström, J.-Å. Jönsson, and G. Tyler, “Low-molecular organic acids in the rhizosphere soil solution of beech forest (Fagus sylvatica L.) Cambisols determined by ion chromatography using supported liquid membrane enrichment technique,” Soil Biology and Biochemistry, vol. 28, no. 9, pp. 1163–1169, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. P. A. W. Van Hees, D. L. Jones, and D. L. Godbold, “Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils,” Soil Biology and Biochemistry, vol. 34, no. 9, pp. 1261–1272, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Sandnes, T. D. Eldhuset, and G. Wollebæk, “Organic acids in root exudates and soil solution of Norway spruce and silver birch,” Soil Biology and Biochemistry, vol. 37, no. 2, pp. 259–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Baziramakenga, R. R. Simard, and G. D. Leroux, “Determination of organic acids in soil extracts by ion chromatography,” Soil Biology and Biochemistry, vol. 27, no. 3, pp. 349–356, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Bergelin, P. A. W. Van Hees, O. Wahlberg, and U. S. Lundström, “The acid-base properties of high and low molecular weight organic acids in soil solutions of podzolic soils,” Geoderma, vol. 94, no. 2–4, pp. 223–235, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. C. Liao, S. W. C. Chien, M. C. Wang, Y. Shen, P. L. Hung, and B. Das, “Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere,” Chemosphere, vol. 65, no. 2, pp. 343–351, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. Halvorson, J. M. Gonzalez, A. E. Hagerman, and J. L. Smith, “Sorption of tannin and related phenolic compounds and effects on soluble-N in soil,” Soil Biology and Biochemistry, vol. 41, no. 9, pp. 2002–2010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Inderjit and P. C. Bhowmik, “Sorption of benzoic acid onto soil colloids and its implications for allelopathy studies,” Biology and Fertility of Soils, vol. 40, no. 5, pp. 345–348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. D. L. D. Lima, S. M. Santos, H. W. Scherer et al., “Effects of organic and inorganic amendments on soil organic matter properties,” Geoderma, vol. 150, no. 1-2, pp. 38–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. J. Grayston, D. Vaughan, and D. Jones, “Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability,” Applied Soil Ecology, vol. 5, no. 1, pp. 29–56, 1997. View at Google Scholar · View at Scopus
  30. S. Mandal, “Allelopathic activity of Root Exudates from Leonurus sibiricus L. (Raktodrone),” Weed Biology and Management, vol. 1, no. 3, pp. 170–175, 2001. View at Google Scholar · View at Scopus
  31. H. P. Bais, T. S. Walker, H. P. Schweizer, and J. M. Vivanco, “Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum,” Plant Physiology and Biochemistry, vol. 40, no. 11, pp. 983–995, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Nambu, P. A. W. Van Hees, S. A. Essén, and U. S. Lundström, “Assessing centrifugation technique for obtaining soil solution with respect to leaching of low molecular mass organic acids from pine roots,” Geoderma, vol. 127, no. 3-4, pp. 263–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. V. Medvedeva and A. S. Yakovlev, “Changes in the biochemical characteristics of soils in the impact zone of the Kostomuksha Ore-Dressing enterprise,” Eurasian Soil Science, vol. 44, no. 2, pp. 211–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. W. Van Hees, D. L. Jones, R. Finlay, D. L. Godbold, and U. S. Lundström, “The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review,” Soil Biology and Biochemistry, vol. 37, no. 1, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. R. N. Collins, “Separation of low-molecular mass organic acid-metal complexes by high-performance liquid chromatography,” Journal of Chromatography A, vol. 1059, no. 1-2, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. P. A. W. van Hees, J. Dahlén, U. S. Lundström, H. Borén, and B. Allard, “Determination of low molecular weight organic acids in soil solution by HPLC,” Talanta, vol. 48, no. 1, pp. 173–179, 1999. View at Google Scholar
  37. P. A. W. Van Hees, U. S. Lundström, and C.-M. Mörth, “Dissolution of microcline and labradorite in a forest O horizon extract: the effect of naturally occurring organic acids,” Chemical Geology, vol. 189, no. 3-4, pp. 199–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. P. A. W. Van Hees, U. S. Lundström, and R. Giesler, “Low molecular weight organic acids and their Al-complexes in soil solution—composition, distribution and seasonal variation in three podzolized soils,” Geoderma, vol. 94, no. 2–4, pp. 173–200, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. P. A. W. Van Hees, D. L. Jones, G. Jentschke, and D. L. Godbold, “Organic acid concentrations in soil solution: effects of young coniferous trees and ectomycorrhizal fungi,” Soil Biology and Biochemistry, vol. 37, no. 4, pp. 771–776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Pizzeghello, A. Zanella, P. Carletti, and S. Nardi, “Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils,” Chemosphere, vol. 65, no. 2, pp. 190–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. J. M. Holmström, P. A. W. Van Hees, and U. S. Lundström, “Modelling of aluminium chemistry in soil solution of untreated and dolomite treated podzolic soil,” Geoderma, vol. 127, no. 3-4, pp. 280–292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Weisskopf, R.-C. Le Bayon, F. Kohler et al., “Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: a one-year microcosm study on lupin and wheat,” Soil Biology and Biochemistry, vol. 40, no. 7, pp. 1772–1780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Blossfeld, D. Gansert, B. Thiele, A. J. Kuhn, and R. Lösch, “The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp,” Soil Biology and Biochemistry, vol. 43, no. 6, pp. 1186–1197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. W.-X. Ren, P.-J. Li, L. Zheng, S.-X. Fan, and V. A. Verhozina, “Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 17–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Nambu, P. A. W. van Hees, D. L. Jones, S. Vinogradoff, and U. S. Lundström, “Composition of organic solutes and respiration in soils derived from alkaline and non-alkaline parent materials,” Geoderma, vol. 144, no. 3-4, pp. 468–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Sulyok, M. Miró, G. Stingeder, and G. Koellensperger, “The potential of flow-through microdialysis for probing low-molecular weight organic anions in rhizosphere soil solution,” Analytica Chimica Acta, vol. 546, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. P. A. W. van Hees and U. S. Lundström, “Equilibrium models of aluminium and iron complexation with different organic acids in soil solution,” Geoderma, vol. 94, no. 1, pp. 199–219, 2005. View at Google Scholar
  48. B. Piškur, J. Zule, M. Piškur, D. Jurc, and F. Pohleven, “Fungal wood decay in the presence of fly ash as indicated by gravimetrics and by extractability of low molecular weight volatile organic acids,” International Biodeterioration and Biodegradation, vol. 63, no. 5, pp. 594–599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. G. McBride, R. L. Mikkelsen, and K. R. Barker, “The role of low molecular weight organic acids from decomposing rye in inhibiting root-knot nematode populations in soil,” Applied Soil Ecology, vol. 15, no. 3, pp. 243–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. H.-S. Wu, Y.-D. Liu, G.-M. Zhao, X.-Q. Chen, X.-N. Yang, and X.-D. Zhou, “Succinic acid inhibited growth and pathogenicity of in vitro soil-borne fungus Fusarium oxysporum f. sp. Niveum,” Acta Agriculturae Scandinavica Section B, vol. 61, no. 5, pp. 404–409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. S.-H. Park, M.-R. Choi, J.-W. Park et al., “Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce,” Journal of Food Science, vol. 76, no. 6, pp. M293–M298, 2011. View at Google Scholar
  52. G. SongGui, W. XingXiang, and Z. TaoLin, “Effects of low molecular weight organic acids on phosphomonoesterase activity,” Acta Pedologica Sinica, vol. 46, no. 6, pp. 1089–1095, 2009. View at Google Scholar
  53. Y. P. Chen, P. D. Rekha, A. B. Arun, F. T. Shen, W.-A. Lai, and C. C. Young, “Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities,” Applied Soil Ecology, vol. 34, no. 1, pp. 33–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Ström, A. G. Owen, D. L. Godbold, and D. L. Jones, “Organic acid behaviour in a calcareous soil: sorption reactions and biodegradation rates,” Soil Biology and Biochemistry, vol. 33, no. 15, pp. 2125–2133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. S. L. Daniel, C. Pilsl, and H. L. Drake, “Anaerobic oxalate consumption by microorganisms in forest soils,” Research in Microbiology, vol. 158, no. 3, pp. 303–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Vranova, H. Zahradnickova, D. Janous et al., “The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps,” Plant and Soil, vol. 354, no. 1-2, pp. 21–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Ling, L. Ren, Y. Gao, X. Zhu, and B. Sun, “Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil,” Soil Biology and Biochemistry, vol. 41, no. 10, pp. 2187–2195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J.-Q. Zhang and Y.-H. Dong, “Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China,” Journal of Hazardous Materials, vol. 151, no. 2-3, pp. 833–839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. Q. Fu, Y. Dong, H. Hu, and Q. Huang, “Adsorption of the insecticidal protein of Bacillus thuringiensis subsp. kurstaki by soil minerals: effects of organic acid ligands,” Applied Clay Science, vol. 37, no. 1-2, pp. 201–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Tian, E. Dell, and W. Shi, “Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization,” Applied Soil Ecology, vol. 46, no. 3, pp. 426–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Yuan, Z. Xi, Y. Jiang et al., “Desorption of copper and cadmium from soils enhanced by organic acids,” Chemosphere, vol. 68, no. 7, pp. 1289–1297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Lombnæs, A. C. Chang, and B. R. Singh, “Organic ligand, competing cation, and pH effects on dissolution of zinc in soils,” Pedosphere, vol. 18, no. 1, pp. 92–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. V. Ettler, R. Vrtišková, M. Mihaljevič, O. Šebek, T. Grygar, and P. Drahota, “Cadmium, lead and zinc leaching from smelter fly ash in simple organic acids-Simulators of rhizospheric soil solutions,” Journal of Hazardous Materials, vol. 170, no. 2-3, pp. 1264–1268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Debela, J. M. Arocena, R. W. Thring, and T. Whitcombe, “Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils,” Chemosphere, vol. 80, no. 4, pp. 450–456, 2010. View at Google Scholar · View at Scopus
  65. M. W. H. Evangelou, M. Ebel, and A. Schaeffer, “Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum,” Chemosphere, vol. 63, no. 6, pp. 996–1004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. L. H. Wu, Y. M. Luo, P. Christie, and M. H. Wong, “Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil,” Chemosphere, vol. 50, no. 6, pp. 819–822, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Qin, X.-Q. Shan, and B. Wei, “Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils,” Chemosphere, vol. 57, no. 4, pp. 253–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Renella, L. Landi, and P. Nannipieri, “Degradation of low molecular weight organic acids complexed with heavy metals in soil,” Geoderma, vol. 122, no. 2–4, pp. 311–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. A. P. Schwab, Y. He, and M. K. Banks, “The influence of organic ligands on the retention of lead in soil,” Chemosphere, vol. 61, no. 6, pp. 856–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. C. W. A. Do Nascimento, D. Amarasiriwardena, and B. Xing, “Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil,” Environmental Pollution, vol. 140, no. 1, pp. 114–123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. Y.-D. Jing, Z.-L. He, and X.-E. Yang, “Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils,” Journal of Zhejiang University B, vol. 8, no. 3, pp. 192–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. A. P. Schwab, D. S. Zhu, and M. K. Banks, “Influence of organic acids on the transport of heavy metals in soil,” Chemosphere, vol. 72, no. 6, pp. 986–994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. P. N. Chiang, M. K. Wang, P. M. Huang, and J. J. Wang, “Effects of low molecular weight organic acids on137Cs release from contaminated soils,” Applied Radiation and Isotopes, vol. 69, no. 6, pp. 844–851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Wen, S. P. Stacey, M. J. McLaughlin, and J. K. Kirby, “Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils,” Soil Biology and Biochemistry, vol. 41, no. 10, pp. 2214–2221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Huang, H. Hu, X. Li, and L. Y. Li, “Dissolution of rock-forming minerals in organic acids: simulated first stage weathering of fresh mineral surface,” Applied Clay Science, vol. 49, no. 3, pp. 281–287, 2010. View at Google Scholar
  76. Y. Gao, J. He, W. Ling, H. Hu, and F. Liu, “Effects of organic acids on copper and cadmium desorption from contaminated soils,” Environment International, vol. 29, no. 5, pp. 613–618, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. H.-Q. Hu, H.-L. Liu, J.-Z. He, and Q.-Y. Huang, “Effect of selected organic acids on cadmium sorption by variable-and permanent-charge soils1 1 project supported by the national natural sciences foundation of china (No. 40371065),” Pedosphere, vol. 17, no. 1, pp. 117–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. W. H. Huang and W. D. Keller, “Dissolution of rock-forming minerals in organic acids: simulated first stage weathering of fresh mineral surface,” American Mineralogist, vol. 55, no. 11-12, pp. 2076–2094, 1970. View at Google Scholar
  79. C. S. Vogel and J. O. Dawson, “In vitro growth of five Frankia isolates in the presence of four phenolic acids and juglone,” Soil Biology and Biochemistry, vol. 18, no. 2, pp. 227–231, 1986. View at Google Scholar · View at Scopus
  80. S. Caspersen, B. W. Alsanius, P. Sundin, and P. Jensén, “Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.),” Soil Biology and Biochemistry, vol. 32, no. 8-9, pp. 1063–1070, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. R.-K. Xu, Y.-G. Zhu, and D. Chittleborough, “Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids,” Journal of Environmental Sciences, vol. 16, no. 1, pp. 5–8, 2004. View at Google Scholar · View at Scopus
  82. J. Li and R. Xu, “Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils,” Journal of Colloid and Interface Science, vol. 306, no. 1, pp. 3–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. B. R. Dalton, “The occurrence and behavior of plant phenolic acids in soil environment and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy,” in Principles and Practices in Plant Ecology: Allelochemical Interactions, Inderjit, K. M. M. Dakshini and C. L. Foy, Eds., pp. 57–74, CRC, Boca Raton, Fla, USA, 1999. View at Google Scholar
  84. A. Evans Jr., “Biodegradation of 14C-labeled low molecular organic acids using three biometer methods,” Journal of Geochemical Exploration, vol. 65, no. 1, pp. 17–25, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Oburger, G. J. D. Kirk, W. W. Wenzel, M. Puschenreiter, and D. L. Jones, “Interactive effects of organic acids in the rhizosphere,” Soil Biology and Biochemistry, vol. 41, no. 3, pp. 449–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Li, R. Xu, S. Xiao, and G. Ji, “Effect of low-molecular-weight organic anions on exchangeable aluminum capacity of variable charge soils,” Journal of Colloid and Interface Science, vol. 284, no. 2, pp. 393–399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Li, R. Xu, D. Tiwari, and G. Ji, “Effect of low-molecular-weight organic acids on the distribution of mobilized Al between soil solution and solid phase,” Applied Geochemistry, vol. 21, no. 10, pp. 1750–1759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. K. W. Goyne, S. L. Brantley, and J. Chorover, “Effects of organic acids and dissolved oxygen on apatite and chalcopyrite dissolution: implications for using elements as organomarkers and oxymarkers,” Chemical Geology, vol. 234, no. 1-2, pp. 28–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. K. W. Goyne, S. L. Brantley, and J. Chorover, “Rare earth element release from phosphate minerals in the presence of organic acids,” Chemical Geology, vol. 278, no. 1-2, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Singh and S. Mohan, “Adsorption behavior of selected monosaccharides onto an alumina interface,” Journal of Colloid and Interface Science, vol. 270, no. 1, pp. 21–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Fischer, A. Meyer, K. Fischer, and Y. Kuzyakov, “Carbohydrate and amino acid composition of dissolved organic matter leached from soil,” Soil Biology and Biochemistry, vol. 39, no. 11, pp. 2926–2935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. W. Zhang, H. He, and X. Zhang, “Determination of neutral sugars in soil by capillary gas chromatography after derivatization to aldononitrile acetates,” Soil Biology and Biochemistry, vol. 39, no. 10, pp. 2665–2669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. X. Zhang, W. Amelung, Y. Yuan, S. Samson-Liebig, L. Brown, and W. Zech, “Land-use effects on amino sugars in particle size fractions of an Argiudoll,” Applied Soil Ecology, vol. 11, no. 2-3, pp. 271–275, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. D. A. N. Ussiri and C. E. Johnson, “Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods,” Geoderma, vol. 111, no. 1-2, pp. 123–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Allard, “A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit: bound lipid, carbohydrate and amino acid distributions,” Geoderma, vol. 130, no. 1-2, pp. 77–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Keeler, E. F. Kelly, and G. E. Maciel, “Chemical-structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA,” Geoderma, vol. 130, no. 1-2, pp. 124–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Jolivet, D. A. Angers, M. H. Chantigny, F. Andreux, and D. Arrouays, “Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping,” Soil Biology and Biochemistry, vol. 38, no. 9, pp. 2834–2842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Guggenberger, W. Zech, and R. J. Thomas, “Lignin and carbohydrate alteration in particle-size separates of an oxisol under tropical pastures following native savanna,” Soil Biology and Biochemistry, vol. 27, no. 12, pp. 1629–1638, 1995. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Fatima Begonia and R. J. Kremer, “Chemotaxis of deleterious rhizobacteria to birdsfoot trefoil,” Applied Soil Ecology, vol. 11, no. 1, pp. 35–42, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Haase, G. Neumann, A. Kania, Y. Kuzyakov, V. Römheld, and E. Kandeler, “Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L,” Soil Biology and Biochemistry, vol. 39, no. 9, pp. 2208–2221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. J. K. Nieminen, “Wood ash effects on soil fauna and interactions with carbohydrate supply: a minireview,” in Recycling of Biomass Ashes, H. Insam and B. A. Knapp, Eds., pp. 45–56, Springer, Berlin, Germany, 2011. View at Google Scholar
  102. P. Rovira and V. R. Vallejo, “Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach,” Geoderma, vol. 107, no. 1-2, pp. 109–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Gallardo and J. Merino, “Soil nitrogen dynamics in response to carbon increase in a Mediterranean shrubland of SW Spain,” Soil Biology and Biochemistry, vol. 30, no. 10-11, pp. 1349–1358, 1998. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Gross and B. Glaser, “Minimization of carbon addition during derivatization of monosaccharides for compound-specific δ13C analysis in environmental research,” Rapid Communications in Mass Spectrometry, vol. 18, no. 22, pp. 2753–2764, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Schmitt and B. Glaser, “Organic matter dynamics in a temperate forest soil following enhanced drying,” Soil Biology and Biochemistry, vol. 43, no. 3, pp. 478–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. J. M. Oades, “Soil organic matter and structural stability: mechanisms and implications for management,” Plant and Soil, vol. 76, no. 1–3, pp. 319–337, 1984. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Roberts, R. Bol, and D. L. Jones, “Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling,” Soil Biology and Biochemistry, vol. 39, no. 12, pp. 3081–3092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. X. Zhang and W. Amelung, “Gas chromatograph1c determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils,” Soil Biology and Biochemistry, vol. 28, no. 9, pp. 1201–1206, 1996. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Engelking, H. Flessa, and R. G. Joergensen, “Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil,” Soil Biology and Biochemistry, vol. 39, no. 8, pp. 2111–2118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. B. Glaser, M.-B. Turrión, and K. Alef, “Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis,” Soil Biology and Biochemistry, vol. 36, no. 3, pp. 399–407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. R. G. Joergensen, B. Meyer, and T. Mueller, “Time-course of the soil microbial biomass under wheat: a one year field study,” Soil Biology and Biochemistry, vol. 26, no. 8, pp. 987–994, 1994. View at Google Scholar · View at Scopus
  112. R. G. Joergensen, T. Mueller, and V. Wolters, “Total carbohydrates of the soil microbial biomass in 0.5 M K2SO4 soil extracts,” Soil Biology and Biochemistry, vol. 28, no. 9, pp. 1147–1153, 1996. View at Publisher · View at Google Scholar · View at Scopus
  113. R. M. Johnson and K. S. Pregitzer, “Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO2 and O3,” Soil Biology and Biochemistry, vol. 39, no. 12, pp. 3159–3166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Elmholt, P. Schjønning, L. J. Munkholm, and K. Debosz, “Soil management effects on aggregate stability and biological binding,” Geoderma, vol. 144, no. 3-4, pp. 455–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. J. K. Adesodun, J. S. C. Mbagwu, and N. Oti, “Structural stability and carbohydrate contents of an ultisol under different management systems,” Soil and Tillage Research, vol. 60, no. 3-4, pp. 135–142, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Mikutta, G. E. Schaumann, D. Gildemeister et al., “Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3-4100 kyr), Hawaiian Islands,” Geochimica et Cosmochimica Acta, vol. 73, no. 7, pp. 2034–2060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Schlecht-Pietsch, U. Wagner, and T.-H. Anderson, “Changes in composition of soil polysaccharides and aggregate stability after carbon amendments to different textured soils,” Applied Soil Ecology, vol. 1, no. 2, pp. 145–154, 1994. View at Google Scholar · View at Scopus
  118. L. V. Verchot, L. Dutaur, K. D. Shepherd, and A. Albrecht, “Organic matter stabilization in soil aggregates: understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils,” Geoderma, vol. 161, no. 3-4, pp. 182–193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. D. Cosentino, C. Chenu, and Y. Le Bissonnais, “Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil,” Soil Biology and Biochemistry, vol. 38, no. 8, pp. 2053–2062, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Yousefi, M. Hajabbasi, and H. Shariatmadari, “Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran,” Soil and Tillage Research, vol. 101, no. 1-2, pp. 57–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. C. Mertz, M. Kleber, and R. Jahn, “Soil organic matter stabilization pathways in clay sub-fractions from a time series of fertilizer deprivation,” Organic Geochemistry, vol. 36, no. 9, pp. 1311–1322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Puget, D. A. Angers, and C. Chenu, “Nature of carbohydrates associated with water-stable aggregates of two cultivated soils,” Soil Biology and Biochemistry, vol. 31, no. 1, pp. 55–63, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Derrien, C. Marol, and J. Balesdent, “Microbial biosyntheses of individual neutral sugars among sets of substrates and soils,” Geoderma, vol. 139, no. 1-2, pp. 190–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Miltner and W. Zech, “Carbohydrate decomposition in beech litter as influenced by aluminium, iron and manganese oxides,” Soil Biology and Biochemistry, vol. 30, no. 1, pp. 1–7, 1998. View at Publisher · View at Google Scholar · View at Scopus
  125. E. Marín-Spiotta, C. W. Swanston, M. S. Torn, W. L. Silver, and S. D. Burton, “Chemical and mineral control of soil carbon turnover in abandoned tropical pastures,” Geoderma, vol. 143, no. 1-2, pp. 49–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Osono, S. Hobara, T. Hishinuma, and J.-I. Azuma, “Selective lignin decomposition and nitrogen mineralization in forest litter colonized by Clitocybe sp,” European Journal of Soil Biology, vol. 47, no. 2, pp. 114–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Traversa, V. D'Orazio, and N. Senesi, “Properties of dissolved organic matter in forest soils: influence of different plant covering,” Forest Ecology and Management, vol. 256, no. 12, pp. 2018–2028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. L. J. Sanger, P. Cox, P. Splatt, M. Whelan, and J. M. Anderson, “Variability in the quality and potential decomposability of Pinus sylvestris litter from sites with different soil characteristics: acid detergent fibre (ADF) and carbohydrate signatures,” Soil Biology and Biochemistry, vol. 30, no. 4, pp. 455–461, 1998. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Rumpel, K. Eusterhues, and I. Kögel-Knabner, “Non-cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons of two acid forest soils,” Soil Biology and Biochemistry, vol. 42, no. 2, pp. 379–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. G. D. Bending, M. K. Turner, F. Rayns, M.-C. Marx, and M. Wood, “Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes,” Soil Biology and Biochemistry, vol. 36, no. 11, pp. 1785–1792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. C. Rumpel and M.-F. Dignac, “Gas chromatographic analysis of monosaccharides in a forest soil profile: analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation,” Soil Biology and Biochemistry, vol. 38, no. 6, pp. 1478–1481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Rovira and V. Ramón Vallejo, “Labile, recalcitrant, and inert organic matter in Mediterranean forest soils,” Soil Biology and Biochemistry, vol. 39, no. 1, pp. 202–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. C. Liang and T. C. Balser, “Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA,” Geoderma, vol. 148, no. 1, pp. 113–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. P. M. Medeiros, M. F. Fernandes, R. P. Dick, and B. R. T. Simoneit, “Seasonal variations in sugar contents and microbial community in a ryegrass soil,” Chemosphere, vol. 65, no. 5, pp. 832–839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Kawahigashi, H. Sumida, and K. Yamamoto, “Seasonal changes in organic compounds in soil solutions obtained from volcanic ash soils under different land uses,” Geoderma, vol. 113, no. 3-4, pp. 381–396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Hu, D. C. Coleman, P. F. Hendrix, and M. H. Beare, “Biotic manipulation effects on soil carbohydrates and microbial biomass in a cultivated soil,” Soil Biology and Biochemistry, vol. 27, no. 9, pp. 1127–1135, 1995. View at Publisher · View at Google Scholar · View at Scopus
  137. T. L. Thompson, E. Zaady, P. Huancheng, T. B. Wilson, and D. A. Martens, “Soil C and N pools in patchy shrublands of the Negev and Chihuahuan Deserts,” Soil Biology and Biochemistry, vol. 38, no. 7, pp. 1943–1955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. J. A. J. Dungait, R. Bol, I. D. Bull, and R. P. Evershed, “Tracking the fate of dung-derived carbohydrates in a temperate grassland soil using compound-specific stable isotope analysis,” Organic Geochemistry, vol. 40, no. 12, pp. 1210–1218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Spohn and L. Giani, “Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time,” Soil Biology and Biochemistry, vol. 43, no. 5, pp. 1081–1088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Hu, D. C. Coleman, C. R. Carroll, P. F. Hendrix, and M. H. Beare, “Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types,” Agriculture, Ecosystems and Environment, vol. 65, no. 1, pp. 69–78, 1997. View at Publisher · View at Google Scholar · View at Scopus
  141. M. H. Beare, S. Hu, D. C. Coleman, and P. F. Hendrix, “Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils,” Applied Soil Ecology, vol. 5, no. 3, pp. 211–219, 1997. View at Google Scholar · View at Scopus
  142. F. Caravaca, M. M. Alguacil, R. Azcón, G. Díaz, and A. Roldán, “Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L,” Applied Soil Ecology, vol. 25, no. 2, pp. 169–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Spaccini, J. S. C. Mbagwu, C. A. Igwe, P. Conte, and A. Piccolo, “Carbohydrates and aggregation in lowland soils of Nigeria as influenced by organic inputs,” Soil and Tillage Research, vol. 75, no. 2, pp. 161–172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. A. M. Treonis, S. J. Grayston, P. J. Murray, and L. A. Dawson, “Effects of root feeding, cranefly larvae on soil microorganisms and the composition of rhizosphere solutions collected from grassland plants,” Applied Soil Ecology, vol. 28, no. 3, pp. 203–215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Tejada, C. Garcia, J. L. Gonzalez, and M. T. Hernandez, “Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil,” Soil Biology and Biochemistry, vol. 38, no. 6, pp. 1413–1421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Saha, V. Prakash, S. Kundu, N. Kumar, and B. L. Mina, “Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in N-W Himalaya,” European Journal of Soil Biology, vol. 44, no. 3, pp. 309–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. L. Carrasco, F. Caravaca, R. Azcón, and A. Roldán, “Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings,” Chemosphere, vol. 74, no. 2, pp. 239–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. J. Kruse, A. Schlichting, J. Siemens, T. Regier, and P. Leinweber, “Pyrolysis-field ionization mass spectrometry and nitrogen K-edge XANES spectroscopy applied to bulk soil leachates-a case study,” Science of the Total Environment, vol. 408, no. 20, pp. 4910–4915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. M.-C. Larre-Larrouy and C. Feller, “Determination of carbohydrates in two ferrallitic soils: analysis by capillary gas chromatography after derivatization by silylation,” Soil Biology and Biochemistry, vol. 29, no. 9-10, pp. 1585–1589, 1997. View at Publisher · View at Google Scholar · View at Scopus
  150. D. A. Martens and K. L. Loeffelmann, “Improved accounting of carbohydrate carbon from plants and soils,” Soil Biology and Biochemistry, vol. 34, no. 10, pp. 1393–1399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  151. T. Sariyildiz and J. M. Anderson, “Interactions between litter quality, decomposition and soil fertility: a laboratory study,” Soil Biology and Biochemistry, vol. 35, no. 3, pp. 391–399, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. E. Eder, S. Spielvogel, A. Kölbl, G. Albert, and I. Kögel-Knabner, “Analysis of hydrolysable neutral sugars in mineral soils: improvement of alditol acetylation for gas chromatographic separation and measurement,” Organic Geochemistry, vol. 41, no. 6, pp. 580–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. T. Murata, H. Tanaka, S. Yasue, R. Hamada, K. Sakagami, and Y. Kurokawa, “Seasonal variations in soil microbial biomass content and soil neutral sugar composition in grassland in the Japanese Temperate Zone,” Applied Soil Ecology, vol. 11, no. 2-3, pp. 253–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Higa, E. Miyamoto, L. U. Rahman, and Y. Kitamura, “Root tip-dependent, active riboflavin secretion by Hyoscyamus albus hairy roots under iron deficiency,” Plant Physiology and Biochemistry, vol. 46, no. 4, pp. 452–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. M. C. B. Sulochana, “B-Vitamins in root exudates of cotton,” Plant and Soil, vol. 16, no. 3, pp. 327–334, 1962. View at Publisher · View at Google Scholar · View at Scopus
  156. H. Kaňová, J. Carre, V. Vránová, K. Rejsek, and P. Formánek, “Organic compounds in root exudates of Miscanthus × Giganteus greef et deu and limitation of microorganisms in its rhizosphere bynutrients,” Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 58, no. 5, pp. 203–208, 2010. View at Google Scholar · View at Scopus
  157. R. Pinton, Z. Varanini, and P. Nannipieri, The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, CRC Press; Taylor-Francis Group, Boca Raton, Fla, USA, 2nd edition, 2007.
  158. X. Ding, B. Zhang, X. Zhang, X. Yang, and X. Zhang, “Effects of tillage and crop rotation on soil microbial residues in a rainfed agroecosystem of northeast China,” Soil and Tillage Research, vol. 114, no. 1, pp. 43–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. W. R. Cookson, D. V. Murphy, and M. M. Roper, “Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient,” Soil Biology and Biochemistry, vol. 40, no. 3, pp. 763–777, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. B. A. Stevenson, G. P. Sparling, L. A. Schipper, B. P. Degens, and L. C. Duncan, “Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale,” Soil Biology and Biochemistry, vol. 36, no. 1, pp. 49–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  161. A. R. McLeod, K. K. Newsham, and S. C. Fry, “Elevated UV-B radiation modifies the extractability of carbohydrates from leaf litter of Quercus robur,” Soil Biology and Biochemistry, vol. 39, no. 1, pp. 116–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. S. Spielvogel, J. Prietzel, and I. Kögel-Knabner, “Changes of lignin phenols and neutral sugars in different soil types of a high-elevation forest ecosystem 25 years after forest dieback,” Soil Biology and Biochemistry, vol. 39, no. 2, pp. 655–668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. R. Kiem and I. Kögel-Knabner, “Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils,” Soil Biology and Biochemistry, vol. 35, no. 1, pp. 101–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. W. Rosenberg, K. G. J. Nierop, H. Knicker, P. A. De Jager, K. Kreutzer, and T. Weiß, “Liming effects on the chemical composition of the organic surface layer of a mature Norway spruce stand (Picea abies [L.] Karst.),” Soil Biology and Biochemistry, vol. 35, no. 1, pp. 155–165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  165. M. Spohn and L. Giani, “Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils,” Soil Biology and Biochemistry, vol. 42, no. 9, pp. 1505–1511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. N. Barrera-Bassols, J. A. Zinck, and E. Van Ranst, “Local soil classification and comparison of indigenous and technical soil maps in a Mesoamerican community using spatial analysis,” Geoderma, vol. 135, pp. 140–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Teplitski and S. Rajamani, “Signal and nutrient exchange in the interactions between soil algae and bacteria,” in Biocommunication in Soil Microorganisms, G. Witzany, Ed., vol. 23, pp. 413–426, Springer, Berlin, Germany, 2011. View at Google Scholar
  168. O. Muter, K. Potapova, B. Limane et al., “The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid andsoil,” Journal of Environmental Management, vol. 98, no. 1, pp. 51–55, 2012. View at Publisher · View at Google Scholar · View at Scopus
  169. E. H. F. Abd El-Zaher, Y. A. G. Mahmoud, and M. M. Aly, “Effect of different concentrations of phenol on growth of some fungi isolated from contaminated soil,” African Journal of Biotechnology, vol. 10, no. 8, pp. 1384–1392, 2011. View at Google Scholar · View at Scopus
  170. D. Kafkewitz, F. Fava, and P. M. Armenante, “Effect for vitamins on the aerobic degradation of 2-chlorophenol, 4-chlorophenil, and 4-chlorobiphenyl,” Applied Microbiology and Biotechnology, vol. 46, no. 4, pp. 414–421, 1996. View at Publisher · View at Google Scholar · View at Scopus
  171. S. A. Hashsham and D. L. Freedman, “Adsorption of vitamin B12 to alumina, kaolinite, sand and sandy soil,” Water Research, vol. 37, no. 13, pp. 3189–3193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  172. A. M. Baya, R. S. Boethling, and A. Ramos-Cormenzana, “Vitamin production in relation to phosphate solubilization by soil bacteria,” Soil Biology and Biochemistry, vol. 13, no. 6, pp. 527–531, 1981. View at Google Scholar · View at Scopus
  173. A. I. Essien, B. L. Fetuga, and O. Osibanjo, “β-carotene content and some characteristics of under-exploited seed oils of forest trees in Nigeria,” Food Chemistry, vol. 32, no. 2, pp. 109–116, 1989. View at Google Scholar · View at Scopus
  174. R. Murcia, B. Rodelas, V. Salmerón, M. V. Martínez-Toledo, and J. González-López, “Effect of the herbicide simazine on vitamin production by Azotobacter chroococcum and Azotobacter vinelandii,” Applied Soil Ecology, vol. 6, no. 2, pp. 187–193, 1997. View at Google Scholar · View at Scopus
  175. J. Gonzalez-Lopez, V. Salmeron, J. Moreno, and A. Ramos-Cormenzana, “Amino acids and vitamins produced by Azotobacter vinelandii atcc 12837 in chemically-defined media and dialysed soil media,” Soil Biology and Biochemistry, vol. 15, no. 6, pp. 711–713, 1983. View at Google Scholar · View at Scopus
  176. E. Strzelczyk and H. Rózycki, “Production of B-group vitamins by bacteria isolated from soil, rhizosphere, and mycorrhizosphere of pine (Pinus sylvestris L.),” Zentralblatt fur Mikrobiologie, vol. 140, no. 4, pp. 293–301, 1985. View at Google Scholar · View at Scopus
  177. M. Damon, N. Z. Zhang, D. B. Haytowitz, and S. L. Booth, “Phylloquinone (vitamin K1) content of vegetables,” Journal of Food Composition and Analysis, vol. 18, no. 8, pp. 751–758, 2005. View at Publisher · View at Google Scholar · View at Scopus
  178. J. Franzen, J. Bausch, D. Glatzle, and E. Wagner, “Distribution of vitamin E in spruce seedling and mature tree organs, and within the genus,” Phytochemistry, vol. 30, no. 1, pp. 147–151, 1991. View at Google Scholar · View at Scopus
  179. K. Guillén-Navarro, S. Encarnación, and M. F. Dunn, “Biotin biosynthesis, transport and utilization in rhizobia,” FEMS Microbiology Letters, vol. 246, no. 2, pp. 159–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. S. Hodson, M. Croft, E. Deery, A. Smith, and M. Warren, “Algae acquire vitamin B12 through a symbiotic relationship with bacteria,” Comparative Biochemistry and Physiology A, vol. 146, article S222, 2007. View at Google Scholar
  181. F. Gómez, M. V. Martínez-Toledo, V. Salmerón, B. Rodelas, and J. González-López, “Influence of the insecticides profenofos and diazinon on the microbial activities of Azospirillum brasilense,” Chemosphere, vol. 39, no. 6, pp. 945–957, 1999. View at Publisher · View at Google Scholar · View at Scopus