Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 545149, 8 pages
http://dx.doi.org/10.1155/2013/545149
Clinical Study

The Value of Routine Polymerase Chain Reaction Analysis of Intraocular Fluid Specimens in the Diagnosis of Infectious Posterior Uveitis

1Groote Schuur Hospital, Ophthalmology Department, Cape Town, South Africa
2Moorfields Eye Hospital, London, UK

Received 4 August 2013; Accepted 22 August 2013

Academic Editors: H. Fickenscher and M. Wallon

Copyright © 2013 Marius A. Scheepers et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. S. London, S. R. Rathinam, and E. T. Cunningham Jr., “The epidemiology of uveitis in developing countries,” International Ophthalmology Clinics, vol. 50, no. 2, pp. 1–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. McCannel, G. N. Holland, C. J. Helm et al., “Causes of uveitis in the general practice of ophthalmology,” American Journal of Ophthalmology, vol. 121, no. 1, pp. 35–46, 1996. View at Google Scholar · View at Scopus
  3. A. C. Westeneng, A. Rothova, J. H. de Boer, and J. D. F. de Groot-Mijnes, “Infectious uveitis in immunocompromised patients and the diagnostic value of polymerase chain reaction and Goldmann-Witmer coefficient in aqueous analysis,” American Journal of Ophthalmology, vol. 144, no. 5, pp. 781–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Shafik and C. S. Foster, “Definition, classification, etiology, and epidemiology,” in Diagnosis and Treatment of Uveitis, C. Foster and A. T. Vitale, Eds., pp. 17–26, W.B. Saunders, Philadelphia, Pa, USA, 2002. View at Google Scholar
  5. D. J. Gagliuso, S. A. Teich, A. H. Friedman, and J. Orellana, “Ocular toxoplasmosis in AIDS patients,” Transactions of the American Ophthalmological Society, vol. 88, pp. 63–88, 1990. View at Google Scholar · View at Scopus
  6. J. H. de Boer, C. Verhagen, M. Bruinenberg et al., “Serologic and polymerase chain reaction analysis of intraocular fluids in the diagnosis of infectious uveitis,” American Journal of Ophthalmology, vol. 121, no. 6, pp. 650–658, 1996. View at Google Scholar · View at Scopus
  7. G. M. Fox, C. A. Crouse, E. L. Chuang et al., “Detection of herpesvirus DNA in vitreous and aqueous specimens by the polymerase chain reaction,” Archives of Ophthalmology, vol. 109, no. 2, pp. 266–271, 1991. View at Google Scholar · View at Scopus
  8. J. S. Pepose, L. H. Hilborne, P. A. Cancilla, and R. Y. Foos, “Concurrent herpes simplex and cytomegalovirus retinitis and encephalitis in the acquired immune deficiency syndrome (AIDS),” Ophthalmology, vol. 91, no. 12, pp. 1669–1677, 1984. View at Google Scholar · View at Scopus
  9. T. H. C. Tran, F. Rozenberg, N. Cassoux, N. A. Rao, P. LeHoang, and B. Bodaghi, “Polymerase chain reaction analysis of aqueous humour samples in necrotising retinitis,” British Journal of Ophthalmology, vol. 87, no. 1, pp. 79–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Matos, C. Muccioli, R. Belfort Jr., and L. V. Rizzo, “Correlation between clinical diagnosis and PCR analysis of serum, aqueous, and vitreous samples in patients with inflammatory eye disease,” Arquivos Brasileiros de Oftalmologia, vol. 70, no. 1, pp. 109–114, 2007. View at Google Scholar · View at Scopus
  11. J. D. McCann, T. P. Margolis, M. G. Wong et al., “A sensitive and specific polymerase chain reaction-based assay for the diagnosis of cytomegalovirus retinitis,” American Journal of Ophthalmology, vol. 120, no. 2, pp. 219–226, 1995. View at Google Scholar · View at Scopus
  12. J. B. Ganatra, D. Chandler, C. Santos, B. Kuppermann, and T. P. Margolis, “Viral causes of the acute retinal necrosis syndrome,” American Journal of Ophthalmology, vol. 129, no. 2, pp. 166–172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Abe, K. Tsuchida, and M. Tamai, “A comparative study of the polymerase chain reaction and local antibody production in acute retinal necrosis syndrome and cytomegalovirus retinitis,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 234, no. 7, pp. 419–424, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Abe, M. Sato, and M. Tamai, “Correlation of varicella-zoster virus copies and final visual acuities of acute retinal necrosis syndrome,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 236, no. 10, pp. 747–752, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. R. N. van Gelder, “CME review: polymerase chain reaction diagnostics for posterior segment disease,” Retina, vol. 23, no. 4, pp. 445–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. A. Short, T. P. Margolis, B. D. Kuppermann, A. R. Irvine, D. F. Martin, and D. Chandler, “A polymerase chain reaction-based assay for diagnosing varicella-zoster virus retinitis in patients with acquired immunodeficiency syndrome,” American Journal of Ophthalmology, vol. 123, no. 2, pp. 157–164, 1997. View at Google Scholar · View at Scopus
  17. S. Sugita, N. Shimizu, K. Watanabe et al., “Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis,” British Journal of Ophthalmology, vol. 92, no. 7, pp. 928–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. F. de Groot-Mijnes, A. Rothova, A. M. van Loon et al., “Polymerase chain reaction and goldmann-witmer coefficient analysis are complimentary for the diagnosis of infectious uveitis,” American Journal of Ophthalmology, vol. 141, no. 2, pp. 313–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Rothova, J. H. de Boer, N. H. ten Dam-van Loon et al., “Usefulness of aqueous humor analysis for the diagnosis of posterior uveitis,” Ophthalmology, vol. 115, no. 2, pp. 306–311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Fardeau, S. Romand, N. A. Rao et al., “Diagnosis of toxoplasmic retinochoroiditis with atypical clinical features,” American Journal of Ophthalmology, vol. 134, no. 2, pp. 196–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Fekkar, B. Bodaghi, F. Touafek, P. Le Hoang, D. Mazier, and L. Paris, “Comparison of immunoblotting, calculation of the goldmann-witmer coefficient, and real-time PCR using aqueous humor samples for diagnosis of ocular toxoplasmosis,” Journal of Clinical Microbiology, vol. 46, no. 6, pp. 1965–1967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. G. Montoya, S. Parmley, O. Liesenfeld, G. J. Jaffe, and J. S. Remington, “Use of the polymerase chain reaction for diagnosis of ocular toxoplasmosis,” Ophthalmology, vol. 106, no. 8, pp. 1554–1563, 1999. View at Google Scholar · View at Scopus
  23. P. Labalette, L. Delhaes, F. Margaron, B. Fortier, and J. Rouland, “Ocular toxoplasmosis after the fifth decade,” American Journal of Ophthalmology, vol. 133, no. 4, pp. 506–515, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Errera, P. Goldschmidt, L. Batellier et al., “Real-time polymerase chain reaction and intraocular antibody production for the diagnosis of viral versus toxoplasmic infectious posterior uveitis,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 249, no. 12, pp. 1837–1846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Sugita, M. Ogawa, S. Inoue, N. Shimizu, and M. Mochizuki, “Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time,” Japanese Journal of Ophthalmology, vol. 55, no. 5, pp. 495–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Sharma, R. Bansal, V. Gupta, and A. Gupta, “Diagnosis of tubercular uveitis by quantitative polymerase chain reaction,” Journal of Ophthalmic Inflammation and Infection, vol. 1, pp. 23–27, 2011. View at Google Scholar
  27. The 2010 National Antenatal Sentinel HIV & Syphilis Prevalence Survey in South Africa, http://www.doh.gov.za/docs/reports/2011/hiv_aids_survey.pdf.
  28. F. D. Lakeman, R. J. Whitley, C. Alford et al., “Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease,” Journal of Infectious Diseases, vol. 171, no. 4, pp. 857–863, 1995. View at Google Scholar · View at Scopus
  29. D. H. Gilden, A. N. Dueland, M. E. Devlin, R. Mahalingam, and R. Cohrs, “Varicella-zoster virus reactivation without rash,” Journal of Infectious Diseases, vol. 166, supplement 1, pp. S30–S34, 1992. View at Google Scholar · View at Scopus
  30. S. Ishigaki, M. Takeda, T. Kura et al., “Cytomegalovirus DNA in the sera of patients with cytomegalovirus pneumonia,” British Journal of Haematology, vol. 79, no. 2, pp. 198–204, 1991. View at Google Scholar · View at Scopus
  31. C. D. Jones, N. Okhravi, P. Adamson, S. Tasker, and S. Lightman, “Comparison of PCR detection methods for B1, P30, and 18S rDNA genes of T. Gondii in aqueous humor,” Investigative Ophthalmology and Visual Science, vol. 41, no. 3, pp. 634–644, 2000. View at Google Scholar · View at Scopus
  32. T. Takahashi, T. Nakayama, M. Tamura et al., “Nested polymerase chain reaction for assessing the clinical course of tuberculous meningitis,” Neurology, vol. 64, no. 10, pp. 1789–1793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. T. W. Harper, D. Miller, J. C. Schiffman, and J. L. Davis, “Polymerase chain reaction analysis of aqueous and vitreous specimens in the diagnosis of posterior segment infectious uveitis,” American Journal of Ophthalmology, vol. 147, no. 1, pp. 140–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Gupta, A. Gupta, and N. A. Rao, “Intraocular tuberculosis—an update,” Survey of Ophthalmology, vol. 52, no. 6, pp. 561–587, 2007. View at Publisher · View at Google Scholar · View at Scopus