Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 572140, 7 pages
http://dx.doi.org/10.1155/2013/572140
Research Article

Pore Structure and Limit Pressure of Gas Slippage Effect in Tight Sandstone

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Received 1 September 2013; Accepted 11 October 2013

Academic Editors: S. Kalligeros, T. Morosuk, and N. Usta

Copyright © 2013 Lijun You et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Kang and P. Luo, “Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China,” Petroleum Exploration and Development, vol. 34, no. 2, pp. 239–245, 2007. View at Google Scholar · View at Scopus
  2. H. Krutter and R. J. Day, “Modification of permeability measurements,” Oil Weekly, vol. 104, no. 4, pp. 24–32, 1941. View at Google Scholar
  3. J. C. Calhoun and S. T. Yuster, “A study of the flow of homogeneous fluids through ideal porous media,” in Proceedings of the Drilling and Production Practice, pp. 335–355, American Petroleum Institute, 1946.
  4. J. Yang, Y. L. Kang, Q. G. Li et al., “Characters of micro-structure and percolation in tight sandstone gas reservoirs,” Advances in Mechanics, vol. 38, no. 2, pp. 229–235, 2008. View at Google Scholar
  5. L. J. Klinkenberg, “The permeability of porous media to liquids and gases,” in Proceedings of the Drilling and Production Practice, pp. 200–213, American Petroleum Institute, 1941.
  6. Y. D. Yao, X. F. Li, J. L. Ge, and Z. Ning, “Experimental research for klinkenberg effect of gas percolation in low permeable gas reservoirs,” Natural Gas Industry, vol. 24, no. 11, pp. 14–102, 2004. View at Google Scholar · View at Scopus
  7. V. Blanchard, D. Lasseux, H. Bertin et al., “Gas/water flow in porous media in the presence of adsorbed polymer: experimental study on non-darcy effects,” in Proceedings of the 15th SPE-DOE Improved Oil Recovery Symposium: Old Reservoirs New Tricks A Global Perspective (SPE '06), pp. 529–538, April 2006. View at Scopus
  8. W. Tanikawa and T. Shimamoto, “Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks,” Hydrology and Earth System Sciences, vol. 3, pp. 1315–1338, 2006. View at Publisher · View at Google Scholar
  9. M. Tadayoni and M. Valadkhani, “New approach for the prediction of Klinkenberg permeability in situ for low permeability sandstone in tight gas reservoir,” in Proceedings of the SPE Middle East Unconventional Gas Conference and Exhibition, 2012.
  10. R. L. Luo, S. L. Cheng, H. Zhu et al., “Problems on the study of slippage effect in low-permeability gas reservoirs,” Gas Industry, vol. 27, no. 4, pp. 92–94, 2007. View at Google Scholar
  11. J. Yan, N. S. Zhang, X. J. Liu et al., “Research on the critical index of considering gas slippage effect,” Journal of Wuhan Polytechnic University, vol. 28, no. 3, pp. 30–32, 2009. View at Google Scholar
  12. A. Zeinijahromi, A. Vaz, and P. Bedrikovetsky, “Well impairment by fines migration in gas fields,” Journal of Petroleum Science and Engineering, vol. 88-89, pp. 125–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. W. F. Brace, J. B. Walsh, and W. T. Frangos, “Permeability of granite under high pressure,” Journal of Geophysical Research, vol. 73, no. 6, pp. 2225–2236, 1968. View at Publisher · View at Google Scholar
  14. T. Ertekin, G. R. King, and F. C. Schwerer, “Dynamic gas slippage: a unique dual-mechanism approach to the flow of gas in tight formation,” SPE Formation Evaluation, vol. 1, no. 1, pp. 43–52, 1986. View at Google Scholar · View at Scopus
  15. R. Rangarajan, M. A. Mazid, T. Matsuura, and S. Sourirajan, “Permeation of pure gases under pressure through asymmetric porous membranes. Membrane characterization and prediction of performance,” Industrial & Engineering Chemistry Process Design and Development, vol. 23, no. 1, pp. 79–87, 1984. View at Google Scholar · View at Scopus
  16. F. Civan, “A triple-mechanism fractal model with hydraulic dispersion for gas permeation in tight reservoirs,” in Proceedings of the SPE International Petroleum Conference and Exhibithion in Mexico, pp. 261–269, February 2002. View at Scopus
  17. Y. S. Wu, K. Pruess, and P. Persoff, “Gas flow in porous media with Klinkenberg effects,” Transport in Porous Media, vol. 32, no. 1, pp. 117–137, 1998. View at Google Scholar · View at Scopus
  18. S. Roy, R. Raju, H. F. Chuang, B. A. Cruden, and M. Meyyappan, “Modeling gas flow through microchannels and nanopores,” Journal of Applied Physics, vol. 93, no. 8, pp. 4870–4879, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Ortega and R. Aguilera, “A complete petrophysical evaluation method for tight formations from only drill cuttings in the absence of well logs,” in Proceedings of the SPE Canadian Unconventional Resources Conference, pp. 1–21, 2012.
  20. S. Li, M. Dong, and Z. Li, “Measurement and revised interpretation of gas flow behavior in tight reservoir cores,” Journal of Petroleum Science and Engineering, vol. 65, no. 1-2, pp. 81–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Y. Ye, S. S. Gao, W. Xiong et al., “Percolation characteristics of gas in sandstone gas reservoir with low permeability under reservoir pressure,” Complex Hydrocarbon Reservoirs, vol. 4, no. 1, pp. 59–62, 2011. View at Google Scholar
  22. W. Xiong, S. S. Gao, Z. M. Hu et al., “An experimental study on the percolation characteristics of single phase gas in low and ultra-low permeability sandstone gas reservoirs,” Gas Industry, vol. 29, no. 9, pp. 75–77, 2009. View at Google Scholar
  23. S. S. Gao, W. Xiong, and X. G. Liu, “Experimental research status and several novel understandings on gas percolation mechanism in low-permeability sandstone gas reservoirs,” Gas Industry, vol. 30, no. 1, pp. 52–55, 2010. View at Google Scholar
  24. G. Y. Zhu, X. G. Liu, S. T. Li et al., “A study of slippage effect of gas percolation in low permeability gas reservoirs,” Gas Industry, vol. 27, no. 5, pp. 44–47, 2007. View at Google Scholar
  25. J. C. Cai, L. J. You, X. Y. Hu et al., “Prediction of effective permeability in porous media based on spontaneousn imbibition effect,” International Journal of Modern Physics C, vol. 23, no. 7, Article ID 1250054, 2012. View at Publisher · View at Google Scholar
  26. J. C. Cai, X. Y. Hu, D. C. Standnes, and L. J. You, “An analytical model for spontaneous imbibition in fractal porous media including gravityo,” Colloids and Surfaces A, vol. 14, no. 4, pp. 228–233, 2012. View at Google Scholar