Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 610721, 12 pages
http://dx.doi.org/10.1155/2013/610721
Review Article

Drought Tolerance in Wheat

Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

Received 29 July 2013; Accepted 6 September 2013

Academic Editors: R. S. Boyd and N. Rajakaruna

Copyright © 2013 Arash Nezhadahmadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ingram and D. Bartels, “The molecular basis of dehydration tolerance in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 47, no. 1, pp. 377–403, 1996. View at Google Scholar · View at Scopus
  2. P. J. Kramer and J. S. Boyer, Water Relations of Plants and Soils, Academic Press, New York, NY, USA, 1995.
  3. G. H. Salekdeh, H. J. Siopongco, L. J. Wade, B. Ghareyazie, and J. Bennett, “A proteomic approach to analyzing drought- and salt-responsiveness in rice,” Field Crops Research, vol. 76, no. 2-3, pp. 199–219, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Rizhsky, H. Liang, and R. Mittler, “The combined effect of drought stress and heat shock on gene expression in tobacco,” Plant Physiology, vol. 130, no. 3, pp. 1143–1151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Chaves, J. P. Maroco, and J. S. Pereira, “Understanding plant responses to drought—from genes to the whole plant,” Functional Plant Biology, vol. 30, no. 3, pp. 239–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Denby and C. Gehring, “Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis,” Trends in Biotechnology, vol. 23, no. 11, pp. 547–552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ribas-Carbo, N. L. Taylor, L. Giles et al., “Effects of water stress on respiration in soybean leaves,” Plant Physiology, vol. 139, no. 1, pp. 466–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Flexas, J. Bota, F. Loreto, G. Cornic, and T. D. Sharkey, “Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants,” Plant Biology, vol. 6, no. 3, pp. 269–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. S. McDonald and W. J. Davies, “Keeping in touch: responses of the whole plant to deficits in water and nitrogen supply,” Advances in Botanical Research, vol. 22, pp. 229–300, 1996. View at Google Scholar · View at Scopus
  10. O. Ouvrard, F. Cellier, K. Ferrare et al., “Differential expression of water stress-regulated genes in drought tolerant or sensitive sunflower genotypes,” in Proceedings of the International Conference of Integrated Studies on Drought Tolerance of Higher Plants, Inter Drought, vol. 95, 1995.
  11. Z. S. Szegletes, L. Erdei, I. Tari, and L. Cseuz, “Accumulation of osmoprotectants in wheat cultivars of different drought tolerance,” Cereal Research Communications, vol. 28, no. 4, pp. 403–410, 2000. View at Google Scholar · View at Scopus
  12. J. K. Zhu, “Salt and drought stress signal transduction in plants,” Annual Review of Plant Biology, vol. 53, pp. 247–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. D. W. Lawlor and G. Cornic, “Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants,” Plant, Cell and Environment, vol. 25, no. 2, pp. 275–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Yordanov, V. Velikova, and T. Tsonev, “Plant responses to drought, acclimation, and stress tolerance,” Photosynthetica, vol. 38, no. 2, pp. 171–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Ji, B. Shiran, J. Wan et al., “Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat,” Plant, Cell and Environment, vol. 33, no. 6, pp. 926–942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Dat, S. Vandenabeele, E. Vranová, M. van Montagu, D. Inzé, and F. van Breusegem, “Dual action of the active oxygen species during plant stress responses,” Cellular and Molecular Life Sciences, vol. 57, no. 5, pp. 779–795, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. W. J. Davies and J. Zhang, “Root signals and the regulation of growth and development of plants in drying soil,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 42, no. 1, pp. 55–76, 1991. View at Google Scholar · View at Scopus
  18. K. Shinozaki and K. Yamaguchi-Shinozaki, “Gene expression and signal transduction in water-stress response,” Plant Physiology, vol. 115, no. 2, pp. 327–334, 1997. View at Google Scholar · View at Scopus
  19. Z. M. Pel, Y. Murata, G. Benning et al., “Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells,” Nature, vol. 406, no. 6797, pp. 731–734, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. L. M. Guan, J. Zhao, and J. G. Scandalios, “Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response,” Plant Journal, vol. 22, no. 2, pp. 87–95, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Jiang and J. Zhang, “Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves,” Journal of Experimental Botany, vol. 53, no. 379, pp. 2401–2410, 2002. View at Google Scholar · View at Scopus
  22. N. J. Rosenberg, B. A. Kimball, P. Martin, and C. F. Cooper, “From climate and CO2 enrichment to evapotranspiration,” in Climate Change and US Water Resources, P. E. Waggoner, Ed., pp. 151–175, 1990. View at Google Scholar
  23. R. M. Gifford, “Growth and yield of CO2 enriched wheat under water-limited conditions,” Australian Journal of Plant Physiology, vol. 6, pp. 367–378, 1979. View at Google Scholar
  24. B. A. Kimball, J. P. Pinter, R. L. Garcia et al., “Productivity and water use of wheat under free-air CO2 enrichment,” Global Change Biology, vol. 1, pp. 429–442, 1995. View at Google Scholar
  25. P. S. Curtis, “A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide,” Plant, Cell and Environment, vol. 19, no. 2, pp. 127–137, 1996. View at Google Scholar · View at Scopus
  26. P. Manunta, R. F. Grant, Y. Feng et al., “Changes in mass and energy transfer between the canopy and the atmosphere: model development and testing with a free-air CO2 enrichment (FACE) experiment,” International Journal of Biometeorology, vol. 46, no. 1, pp. 9–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Xu, S. Yuan, and H. H. Lin, “Response of mitochondrial alternative oxidase (AOX) to light signals,” Plant Signaling and Behavior, vol. 6, no. 1, pp. 55–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. E. A. Bray, “Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data,” Annals of Botany, vol. 89, pp. 803–811, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Clark and T. N. McCaig, “Evaluation of techniques for screening for drought resistance in wheat,” Crop Science, vol. 22, pp. 503–506, 1982. View at Google Scholar
  30. S. W. Ritchie, H. T. Nguyen, and A. S. Holaday, “Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance,” Crop Science, vol. 30, pp. 105–111, 1990. View at Google Scholar
  31. J. Kaur, I. S. Sheoran, and H. S. Nainawatee, “Effect of heat stress on photosynthesis and respiration in a wheat mutant,” in Photosynthesis: Molecular Biology and Bioenergetics, G. S. Singhal, Ed., pp. 297–303, 1988. View at Google Scholar
  32. R. K. Sairam, P. S. Deshmukh, D. S. Shukla, and S. Ram, “Metabolic activity and grain yield under moisture stress in wheat genotypes,” Indian Journal of Plant Physiology, vol. 33, pp. 226–231, 1990. View at Google Scholar
  33. G. S. Premachandra, H. Saneoka, and S. Ogata, “Cell membrane stability an indicator of drought tolerance as affected by applied nitrogen in soybean,” Journal of Agricultural Science, vol. 115, pp. 63–66, 1990. View at Google Scholar
  34. P. S. Deshmukh, R. K. Sairam, and D. S. Shukla, “Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes,” Indian Journal of Plant Physiology, vol. 35, pp. 89–91, 1991. View at Google Scholar
  35. L. C. Ho, “Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 39, pp. 355–378, 1988. View at Google Scholar
  36. M. Grudkowska and B. Zagdańska, “Multifunctional role of plant cysteine proteinases,” Acta Biochimica Polonica, vol. 51, no. 3, pp. 609–624, 2004. View at Google Scholar · View at Scopus
  37. B. Zagdańska and K. Wiśniewski, “Endoproteinase activities in wheat leaves upon water deficit,” Acta Biochimica Polonica, vol. 43, no. 3, pp. 515–520, 1996. View at Google Scholar · View at Scopus
  38. K. Wiśniewski and B. Zagdańska, “Genotype-dependent proteolytic response of spring wheat to water deficiency,” Journal of Experimental Botany, vol. 52, no. 360, pp. 1455–1463, 2001. View at Google Scholar · View at Scopus
  39. S. L. Cosentino, C. Patanè, E. Sanzone, V. Copani, and S. Foti, “Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment,” Industrial Crops and Products, vol. 25, no. 1, pp. 75–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Sankar, C. Abdul Jaleel, P. Manivannan, A. Kishorekumar, R. Somasundaram, and R. Panneerselvam, “Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench under water-limited conditions,” Colloids and Surfaces B, vol. 62, no. 1, pp. 125–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Karthikeyan, C. A. Jaleel, R. Gopi, and M. Deiveekasundaram, “Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs,” Journal of Zhejiang University Science B, vol. 8, no. 7, pp. 453–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. Jaleel, R. Gopi, B. Sankar et al., “Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress,” South African Journal of Botany, vol. 73, no. 2, pp. 190–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. T. C. Hsiao, “Plant response to water stress,” Plant Physiology, vol. 24, pp. 519–534, 1973. View at Google Scholar
  44. L. Erdei, I. Tari, J. I. Csiszár et al., “Osmotic stress responses of wheat species and cultivars differing in drought tolerance: some interesting genes (advices for gene hunting),” Acta Biologica Szegediensis, vol. 46, no. 3-4, pp. 63–65, 2002. View at Google Scholar · View at Scopus
  45. R. Munns, “Comparative physiology of salt and water stress,” Plant, Cell and Environment, vol. 25, no. 2, pp. 239–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Plaut, “Crop plants: critical development stages of water,” in Encyclopedia of Water Science, pp. 95–100, 2003. View at Google Scholar
  47. F. J. M. Maathuis, V. Filatov, P. Herzyk et al., “Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress,” Plant Journal, vol. 35, no. 6, pp. 675–692, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. S. I. Milad, L. E. Wahba, and M. N. Barakat, “Identification of RAPD and ISSR markers associated with flag leaf senescence under water-stressed conditions in wheat (Triticum aestivum L.),” Australian Journal of Crop Science, vol. 5, no. 3, pp. 337–343, 2011. View at Google Scholar · View at Scopus
  49. J. Schneekloth, T. Bauder, and N. Hansen, “Limited irrigation management: principles and practices,” 2012, http://www.ext.colostate.edu/pubs/crops/04720.html.
  50. F. Rizza, F. W. Badeck, L. Cattivelli, O. Lidestri, N. di Fonzo, and A. M. Stanca, “Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions,” Crop Science, vol. 44, no. 6, pp. 2127–2137, 2004. View at Google Scholar · View at Scopus
  51. R. Tuberosa and S. Salvi, “Genomics-based approaches to improve drought tolerance of crops,” Trends in Plant Science, vol. 11, no. 8, pp. 405–412, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Sivamani, A. Bahieldin, J. M. Wraith et al., “Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene,” Plant Science, vol. 155, no. 1, pp. 1–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. T. N. Singh, L. G. Paleg, and D. Aspinall, “Stress metabolism. I. Nitrogen metabolism and growth in the barley plant during water stress,” Australian Journal of Biological Sciences, vol. 26, pp. 45–56, 1973. View at Google Scholar
  54. N. Smirnoff, “The role of active oxygen in the response of plants to water deficit and desiccation,” New Phytologist, vol. 125, pp. 27–58, 1993. View at Google Scholar
  55. L. Li and J. van Staden, “Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress,” Plant Growth Regulation, vol. 24, no. 1, pp. 55–66, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. J. G. Scandalios, “Oxygen stress and superoxide dismutases,” Plant Physiology, vol. 101, no. 1, pp. 7–12, 1993. View at Google Scholar · View at Scopus
  57. L. V. Rensburg and G. H. J. Kruger, “Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L,” Journal of Plant Physiology, vol. 143, no. 6, pp. 730–737, 1994. View at Google Scholar · View at Scopus
  58. J. Zhang and M. B. Kirkham, “Lipid peroxidation in sorghum and sunflower seedlings as affected by ascorbic acid, benzoic acid, and propyl gallate,” Journal of Plant Physiology, vol. 149, no. 5, pp. 489–493, 1996. View at Google Scholar · View at Scopus
  59. M. Seki, M. Narusaka, J. Ishida et al., “Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray,” Plant Journal, vol. 31, no. 3, pp. 279–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. Z. Chen and D. R. Gallie, “The ascorbic acid redox state controls guard cell signaling and stomatal movement,” Plant Cell, vol. 16, no. 5, pp. 1143–1162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Chinnusamy, K. Schumaker, and J. K. Zhu, “Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants,” Journal of Experimental Botany, vol. 55, no. 395, pp. 225–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. C. Tang, “Responses and adaptation of plants to water stress,” Plant Physiology Communications, vol. 4, pp. 1–7, 1983. View at Google Scholar
  63. J. W. Chandler and D. Bartels, “Drought avoidance and drought adaptation,” Encyclopedia of Water Science, pp. 163–165, 2003. View at Google Scholar
  64. K. Apel and H. Hirt, “Reactive oxygen species: metabolism, oxidative stress, and signal transduction,” Annual Review of Plant Biology, vol. 55, pp. 373–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Capell, L. Bassie, and P. Christou, “Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9909–9914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. S. S. Dhanda, G. S. Sethi, and R. K. Behl, “Indices of drought tolerance in wheat genotypes at early stages of plant growth,” Journal of Agronomy and Crop Science, vol. 190, no. 1, pp. 6–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Malabika and R. Wu, “Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice,” Plant Science, vol. 160, no. 5, pp. 869–875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. L.-Z. An and X.-L. Wang, “Changes in polyamine contents and arginine decarboxylase activity in wheat leaves exposed to ozone and hydrogen fluoride,” Journal of Plant Physiology, vol. 150, no. 1-2, pp. 184–187, 1997. View at Google Scholar · View at Scopus
  69. A. Bouchereau, A. Aziz, F. Larher, and J. Martin-Tanguy, “Polyamines and environmental challenges: recent development,” Plant Science, vol. 140, no. 2, pp. 103–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Hertwig, P. Streb, and J. Feierabend, “Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions,” Plant Physiology, vol. 100, no. 3, pp. 1547–1553, 1992. View at Google Scholar · View at Scopus
  71. S. Denčić, R. Kastori, B. Kobiljski, and B. Duggan, “Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions,” Euphytica, vol. 113, no. 1, pp. 43–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. J.-F. Shi, X.-G. Mao, R.-L. Jing, X.-B. Pang, Y.-G. Wang, and X.-P. Chang, “Gene expression profiles of response to water stress at the jointing stage in wheat,” Agricultural Sciences in China, vol. 9, no. 3, pp. 325–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Lonbani and A. Arzani, “Morpho-physiological traits associated with terminal droughtstress tolerance in triticale and wheat,” Agronomy Research, vol. 9, no. 1-2, pp. 315–329, 2011. View at Google Scholar · View at Scopus
  74. J. B. Passioura, “Drought and drought tolerance,” in Drought Tolerance in Higher Plants: Genetical, Physiological and Molecular Biological Analysis, E. Belhassen, Ed., pp. 3–12, Kluwer Academic, Dordrecht, The Netherlands, 1996. View at Google Scholar
  75. K. S. Rucker, C. K. Kevin, C. C. Holbrook, and J. E. Hook, “Identification of peanut genotypes with improved drought avoidance traits,” Peanut Science, vol. 22, pp. 14–18, 1995. View at Google Scholar
  76. H. B. Shao, L. Y. Chu, C. A. Jaleel, and C. X. Zhao, “Water-deficit stress-induced anatomical changes in higher plants,” Comptes Rendus, vol. 331, no. 3, pp. 215–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. C. Hawes, U. Gunawardena, S. Miyasaka, and X. Zhao, “The role of root border cells in plant defense,” Trends in Plant Science, vol. 5, no. 3, pp. 128–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Shimazaki, T. Ookawa, and T. Hirasawa, “The root tip and accelerating region suppress elongation of the decelerating region without any effects on cell turgor in primary roots of maize under water stress,” Plant Physiology, vol. 139, no. 1, pp. 458–465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. R. E. Sharp and W. J. Davis, “Regulation of growth and development of plants growing with a restricted supply of water,” in Plant under Stress, H. G. Jones, T. J. Flowers, and M. B. Jones, Eds., pp. 71–93, Cambridge University Press, Cambridge, UK, 1989. View at Google Scholar
  80. W. G. Spollen, R. E. Sharp, I. N. Saab, and Y. Wu, “Regulation of cell expansion in roots and shoots at low water potentials,” in Water Deficits, Plant Responses From Cell to Community, J. A. C. Smith and H. Griffiths, Eds., pp. 37–52, Bios Scientific Publishers, Oxford, UK, 1993. View at Google Scholar
  81. J. M. Morgan, “Osmoregulation and water stress in higher plants,” Annual Review of Plant Physiology, vol. 35, pp. 299–319, 1984. View at Google Scholar
  82. S. Nicholas, “Plant resistance to environmental stress,” Current Opinion in Biotechnology, vol. 9, pp. 214–219, 1998. View at Google Scholar
  83. J. M. Rane and S. N. Maheshwari, “Effect of pre-anthesis water stress on growth, photosynthesis and yield of six wheat cultivars differing in drought tolerance,” Indian Journal of Plant Physiology, vol. 6, pp. 53–60, 2001. View at Google Scholar
  84. G. Noctor and C. H. Foyer, “Ascorbate and glutathione: keeping active oxygen under control,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 49, pp. 249–279, 1998. View at Google Scholar · View at Scopus
  85. R. C. N. Rao, J. H. Williams, K. D. R. Wadia, K. T. Hubikk, and G. D. Fraquhar, “Crop growth, water use efficiency and carbon isotope discrimination in groundnut genotypes under end season drought conditions,” Annals of Applied Biology, vol. 122, pp. 357–367, 1993. View at Google Scholar
  86. F. Z. Wang, Q. B. Wang, S. Y. Kwon, S. S. Kwak, and W. A. Su, “Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase,” Journal of Plant Physiology, vol. 162, no. 4, pp. 465–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. D. J. Watson, “The physiological basis of variation in yield,” Advances in Agronomy, vol. 4, pp. 101–144, 1952. View at Google Scholar
  88. C. Sudhakar, P. S. Reddy, and K. Veeranjaneyulu, “Effect of salt stress on the enzymes of proline synthesis and oxidation in green gram Phaseolus aureus roxb seedlings,” Journal of Plant Physiology, vol. 141, pp. 621–623, 1993. View at Google Scholar
  89. Q. W. Xue, Z. X. Zhu, J. T. Musick, B. A. Stewart, and D. A. Dusek, “Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation,” Journal of Plant Physiology, vol. 163, no. 2, pp. 154–164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. M. A. Kahlown, A. Raoof, M. Zubair, and W. D. Kemper, “Water use efficiency and economic feasibility of growing rice and wheat with sprinkler irrigation in the Indus Basin of Pakistan,” Agricultural Water Management, vol. 87, no. 3, pp. 292–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. T. J. Close, “Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins,” Physiologia Plantarum, vol. 97, no. 4, pp. 795–803, 1996. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Trouverie, C. Thévenot, J. P. Rocher, B. Sotta, and J. L. Prioul, “The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf,” Journal of Experimental Botany, vol. 54, no. 390, pp. 2177–2186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. J. V. Anderson and D. G. Davis, “Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula,” Plant Physiology, vol. 120, no. 3, pp. 421–433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Pnueli, E. Hallak-Herr, M. Rozenberg et al., “Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam,” Plant Journal, vol. 31, no. 3, pp. 319–330, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. J. A. de Ronde, W. A. Cress, G. H. J. Krüger, R. J. Strasser, and J. van Staden, “Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress,” Journal of Plant Physiology, vol. 161, no. 11, pp. 1211–1224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Yamada, H. Morishita, K. Urano et al., “Effects of free proline accumulation in petunias under drought stress,” Journal of Experimental Botany, vol. 56, no. 417, pp. 1975–1981, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Gubis, R. Vankova, V. Cervena, M. Dragunova, M. Hudcovicova, and H. Lichtnerova, “Transformed tobacco plants with increased tolerance to drought,” South African Journal of Botany, vol. 73, pp. 505–511, 2007. View at Google Scholar
  98. S. Hong-Bo, C. Xiao-Yan, C. Li-Ye et al., “Investigation on the relationship of proline with wheat anti-drought under soil water deficits,” Colloids and Surfaces B, vol. 53, no. 1, pp. 113–119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Suorsa, S. Sirpiö, Y. Allahverdiyeva et al., “Psbr, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II,” Journal of Biological Chemistry, vol. 281, no. 1, pp. 145–150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. G. Esquível, T. S. Pinto, J. Marín-Navarro, and J. Moreno, “Substitution of tyrosine residues at the aromatic cluster around the βA-βB loop of rubisco small subunit affects the structural stability of the enzyme and the in vivo degradation under stress conditions,” Biochemistry, vol. 45, no. 18, pp. 5745–5753, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. F. Ouellet, M. Houde, and F. Sarhan, “Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat,” Plant and Cell Physiology, vol. 34, no. 1, pp. 59–65, 1993. View at Google Scholar · View at Scopus
  102. L. Dure, “The LEA proteins of higher plants,” in Control of Plant Gene Expression, D. P. S. Verma, Ed., pp. 325–335, CRC Press, Boca Raton, Fla, USA, 1983. View at Google Scholar
  103. S. A. Campbell and T. J. Close, “Dehydrins: genes, proteins, and associations with phenotypic traits,” New Phytologist, vol. 137, no. 1, pp. 61–74, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. Z. Cheng, J. Targolli, X. Huang, and R. Wu, “Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.),” Molecular Breeding, vol. 10, no. 1-2, pp. 71–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. J. C. Litts, G. W. Colwell, R. L. Chakerian, and R. S. Quatrano, “The nucleotide sequence of a cDNA clone encoding the wheat Em protein,” Nucleic Acids Research, vol. 15, no. 8, pp. 3607–3618, 1987. View at Publisher · View at Google Scholar · View at Scopus
  106. W. R. J. Marcotte, C. C. Bayley, and R. S. Quatrano, “Regulation of a wheat promoter by abscisic acid in rice protoplasts,” Nature, vol. 335, no. 6189, pp. 454–457, 1988. View at Google Scholar · View at Scopus
  107. C. D. Rock and R. S. Quatrano, “Lanthanide ions are agonists of transient gene expression in rice protoplasts and act in synergy with ABA to increase Em gene expression,” Plant Cell Reports, vol. 15, no. 5, pp. 371–376, 1996. View at Google Scholar · View at Scopus
  108. J. Curry, C. F. Morris, and M. K. Walker-Simmons, “Sequence analysis of a cDNA encoding a group 3 LEA mRNA inducible by ABA or dehydration stress in wheat,” Plant Molecular Biology, vol. 16, no. 6, pp. 1073–1076, 1991. View at Publisher · View at Google Scholar · View at Scopus
  109. J. L. Ried and M. K. Walker-Simmons, “Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.),” Plant Physiology, vol. 102, no. 1, pp. 125–131, 1993. View at Google Scholar · View at Scopus
  110. M. A. Ali-Benali, R. Alary, P. Joudrier, and M.-F. Gautier, “Comparative expression of five LEA genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR,” Biochimica et Biophysica Acta, vol. 1730, no. 1, pp. 56–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Wang, H. Xu, G. Zhang et al., “Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat,” Journal of Genetics and Genomics, vol. 36, no. 12, pp. 711–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Kam, P. Gresshoff, R. Shorter, and G.-P. Xue, “Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaRZF70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root,” Plant Science, vol. 173, no. 6, pp. 650–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Seki, A. Kamei, K. Yamaguchi-Shinozaki, and K. Shinozaki, “Molecular responses to drought, salinity and frost: common and different paths for plant protection,” Current Opinion in Biotechnology, vol. 14, no. 2, pp. 194–199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Yamaguchi-Shinozaki and K. Shinozaki, “A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress,” Plant Cell, vol. 6, no. 2, pp. 251–264, 1994. View at Publisher · View at Google Scholar · View at Scopus
  115. Q. Liu, M. Kasuga, Y. Sakuma et al., “Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis,” Plant Cell, vol. 10, no. 8, pp. 1391–1406, 1998. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Lucas, E. Durmaz, B. A. Akpnar, and H. Budak, “The drought response displayed by a DRE-binding protein from Triticum dicoccoides,” Plant Physiology and Biochemistry, vol. 49, no. 3, pp. 346–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. M. F. Thomashow, “Plant cold acclimation: freezing tolerance genes and regulatory mechanisms,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 50, pp. 571–599, 1999. View at Google Scholar · View at Scopus
  118. J. Zhu, C. H. Dong, and J. K. Zhu, “Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation,” Current Opinion in Plant Biology, vol. 10, no. 3, pp. 290–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Seki, M. Narusaka, H. Abe et al., “Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray,” Plant Cell, vol. 13, no. 1, pp. 61–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Wieczorek, Use of Biotechnology in Agriculture-Benefits and Risks, University of Hawaii, Biotechnology, BIO-3, Honolulu, Hawaii, USA, 2003.
  121. C. Sahi, A. Singh, E. Blumwald, and A. Grover, “Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data,” Physiologia Plantarum, vol. 127, no. 1, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. S. S. Gosala, H. S. Wania, and M. S. Kanga, “Biotechnology and drought tolerance,” Journal of Crop Improvement, vol. 23, no. 1, pp. 19–54, 2009. View at Google Scholar
  123. M. Ashraf, “Inducing drought tolerance in plants: recent advances,” Biotechnology Advances, vol. 28, no. 1, pp. 169–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. J. M. Thoday, “Location of polygenes,” Nature, vol. 191, no. 4786, pp. 368–370, 1961. View at Publisher · View at Google Scholar · View at Scopus
  125. E. Everson and C. W. Schaller, “The genetics of yield differences associated with awn barbing in the barley hybrid (Lion x Atlas10) x Atlas,” Agronomy Journal, vol. 47, pp. 276–280, 1955. View at Google Scholar
  126. V. Verma, M. J. Foulkes, A. J. Worland, R. Sylvester-Bradley, P. D. S. Caligari, and J. W. Snape, “Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments,” Euphytica, vol. 135, no. 3, pp. 255–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. S. A. Quarrie, A. Steed, C. Calestani et al., “A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments,” Theoretical and Applied Genetics, vol. 110, no. 5, pp. 865–880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. W. Powell, M. Morgante, C. Andre et al., “The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis,” Molecular Breeding, vol. 2, no. 3, pp. 225–238, 1996. View at Google Scholar · View at Scopus
  129. J. R. Russell, J. D. Fuller, M. Macaulay et al., “Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs,” Theoretical and Applied Genetics, vol. 95, no. 4, pp. 714–722, 1997. View at Publisher · View at Google Scholar · View at Scopus
  130. J. A. Dávila, Y. Loarce, and E. Ferrer, “Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley,” Theoretical and Applied Genetics, vol. 98, no. 2, pp. 265–273, 1999. View at Publisher · View at Google Scholar · View at Scopus
  131. M. M. Nachit, M. Baum, E. Autrique, M. E. Sorrells, T. Ali Dib, and P. Monneveux, “Association of morphophysiological traits with RFLP markers in durum wheat,” in Tolérance à la Sécheresse des Céréales en Zone Méditerranéenne, P. Monneveux and M. Ben Salem, Eds., pp. 159–171, Diversité Génétique et Amélioration Variétale, Montpellier, France, 1993. View at Google Scholar
  132. M. Ashraf, H. R. Athar, P. J. C. Harris, and T. R. Kwon, “Some prospective strategies for improving crop salt tolerance,” Advances in Agronomy, vol. 97, pp. 45–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. R. D'Ovidio, O. A. Tanzarella, and E. Porceddu, “Rapid and efficient detection of genetic polymorphism in wheat through amplification by polymerase chain reaction,” Plant Molecular Biology, vol. 15, no. 1, pp. 169–171, 1990. View at Publisher · View at Google Scholar · View at Scopus
  134. K. M. Devos and M. D. Gale, “The use of random amplified polymorphic DNA markers in wheat,” Theoretical and Applied Genetics, vol. 84, no. 5-6, pp. 567–572, 1992. View at Publisher · View at Google Scholar · View at Scopus
  135. F. Ben El Maati, M. Jlibene, and M. Moumni, “Study of the polymorphism of common wheat using ISSR markers,” Journal of Food, Agriculture and Environment, vol. 2, no. 3–4, pp. 121–125, 2004. View at Google Scholar
  136. M. N. Barakat, A. A. Al-Doss, K. A. Moustafa, E. I. Ahmed, and A. A. Elshafei, “Morphological and molecular characterization of Saudi wheat genotypes under drought stress,” Journal of Food, Agriculture and Environment, vol. 8, no. 1, pp. 220–228, 2010. View at Google Scholar · View at Scopus
  137. C. P. Joshi and H. T. Nguyen, “Differential display-mediated rapid identification of different members of a multigene family, HSP16.9 in wheat,” Plant Molecular Biology, vol. 31, no. 3, pp. 575–584, 1996. View at Google Scholar · View at Scopus
  138. N. T. Vinh and A. H. Paterson, “Genome mapping and its implication for stress resistance in plants,” in Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches, M. Ashraf and P. J. C. Harris, Eds., Haworth Press, New York, NY, USA, 2005. View at Google Scholar
  139. S. Salvi and R. Tuberosa, “To clone or not to clone plant QTLs: present and future challenges,” Trends in Plant Science, vol. 10, no. 6, pp. 297–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Tondelli, E. Francia, D. Barabaschi et al., “Mapping regulatory genes as candidates for cold and drought stress tolerance in barley,” Theoretical and Applied Genetics, vol. 112, no. 3, pp. 445–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. L. Cattivelli, F. Rizza, F. W. Badeck et al., “Drought tolerance improvement in crop plants: an integrated view from breeding to genomics,” Field Crops Research, vol. 105, no. 1-2, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. S. A. Quarrie, M. Gulli, C. Calestani, A. Steed, and N. Marmiroli, “Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat,” Theoretical and Applied Genetics, vol. 89, no. 6, pp. 794–800, 1994. View at Google Scholar · View at Scopus
  143. B. Teulat, P. Monneveux, J. Wery et al., “Relationships between relative water content and growth parameters under water stress in barley: a QTL study,” New Phytologist, vol. 137, no. 1, pp. 99–107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Sari-Gorla, P. Krajewski, N. di Fonzo, M. Villa, and C. Frova, “Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering,” Theoretical and Applied Genetics, vol. 99, no. 1-2, pp. 289–295, 1999. View at Publisher · View at Google Scholar · View at Scopus
  145. Y. Saranga, M. Menz, C. X. Jiang, R. J. Wright, D. Yakir, and A. H. Paterson, “Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions,” Genome Research, vol. 11, no. 12, pp. 1988–1995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  146. A. C. Sanchez, P. K. Subudhi, D. T. Rosenow, and H. T. Nguyen, “Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench),” Plant Molecular Biology, vol. 48, no. 5-6, pp. 713–726, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Bernier, G. N. Atlin, R. Serraj, A. Kumar, and D. Spaner, “Review: breeding upland rice for drought resistance,” Journal of the Science of Food and Agriculture, vol. 88, no. 6, pp. 927–939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. R. Tuberosa, S. Salvi, M. C. Sanguineti, P. Landi, M. Maccaferri, and S. Conti, “Mapping QTLS regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize,” Annals of Botany, vol. 89, pp. 941–963, 2002. View at Publisher · View at Google Scholar · View at Scopus
  149. P. K. Gupta, R. K. Varshney, P. C. Sharma, and B. Ramesh, “Molecular markers and their applications in wheat breeding,” Plant Breeding, vol. 118, no. 5, pp. 369–390, 1999. View at Google Scholar
  150. N. F. Veesar, A. N. Channa, M. J. Rind, and A. S. Larik, “Influence of water stress imposed at different stages on growth and yield attributes in bread wheat genotypes Triticum aestivum L,” Wheat Information Service, vol. 104, pp. 15–19, 2007. View at Google Scholar
  151. J. L. Araus, G. A. Slafer, M. P. Reynolds, and C. Royo, “Plant breeding and drought in C3 cereals: what should we breed for?” Annals of Botany, vol. 89, pp. 925–940, 2002. View at Publisher · View at Google Scholar · View at Scopus
  152. A. M. Manschadi, J. Christopher, P. Devoil, and G. L. Hammer, “The role of root architectural traits in adaptation of wheat to water-limited environments,” Functional Plant Biology, vol. 33, no. 9, pp. 823–837, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. E. K. Cho and C. B. Hong, “Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants,” Plant Cell Reports, vol. 25, no. 4, pp. 349–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. J. S. Boyer, “Advances in drought tolerance in plants,” Advances in Agronomy, vol. 56, pp. 187–218, 1996. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Blum, “Selection for sustained production in water deficit environments,” in International Crop Science I, D. Buxton III, Ed., pp. 343–347, CSSA, Madison, Wis, USA, 1993. View at Google Scholar
  156. N. C. Collins, F. Tardieu, and R. Tuberosa, “Quantitative trait loci and crop performance under abiotic stress: where do we stand?” Plant Physiology, vol. 147, no. 2, pp. 469–486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. B. Simane, P. C. Struik, M. M. Nachit, and J. M. Peacock, “Ontogenetic analysis of yield components and yield stability of durum wheat in water-limited environments,” Euphytica, vol. 71, no. 3, pp. 211–219, 1993. View at Google Scholar · View at Scopus
  158. N. Khan and F. N. Naqvi, “Effect of water stress in bread wheat hexaploids,” Current Research Journal of Biological Sciences, vol. 3, no. 5, pp. 487–498, 2011. View at Google Scholar
  159. J. P. Schneekloth, N. L. Klocke, G. W. Hergert, D. L. Martin, and R. T. Clark, “Crop rotations with full and limited irrigation and dryland management,” Transactions of the American Society of Agricultural Engineers, vol. 34, no. 6, pp. 2372–2380, 1991. View at Google Scholar · View at Scopus
  160. M. Akram, “Growth and yield components of wheat under water stress of different growth stages,” Bangladesh Journal of Agricultural Research, vol. 36, no. 3, pp. 455–468, 2011. View at Google Scholar
  161. K. F. Solomon, M. T. Labuschagne, and A. T. P. Bennie, “Responses of Ethiopian durum wheat genotypes to drought stress,” South African Journal of Plant and Soil, vol. 20, no. 2, pp. 55–58, 2003. View at Google Scholar · View at Scopus
  162. P. Li, J. Chen, and P. Wu, “Agronomic characteristics and grain yield of 30 spring wheat genotypes under drought stress and nonstress conditions,” Agronomy Journal, vol. 103, no. 6, pp. 1619–1628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. R. W. Todd, N. L. Klocke, G. W. Hergert, and A. M. Parkhurst, “Evaporation from soil influenced by crop shading, crop residue, and wetting regime,” Transactions of the American Society of Agricultural Engineers, vol. 34, no. 2, pp. 461–466, 1991. View at Google Scholar · View at Scopus
  164. B. Ehdaie, “Variation in water-use efficiency and its components in wheat: II. Pot and field experiments,” Crop Science, vol. 35, no. 6, pp. 1617–1626, 1995. View at Google Scholar · View at Scopus
  165. J. Zhou, X. Wang, Y. Jiao et al., “Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle,” Plant Molecular Biology, vol. 63, no. 5, pp. 591–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. D. W. Podlich, C. R. Winkler, and M. Cooper, “Mapping as you go: an effective approach for marker-assisted selection of complex traits,” Crop Science, vol. 44, no. 5, pp. 1560–1571, 2004. View at Google Scholar · View at Scopus