Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 613635, 8 pages
Research Article

Protein Profiling and Histone Deacetylation Activities in Somaclonal Variants of Oil Palm (Elaeis guineensis Jacq.)

1Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2School of Biosciences, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia

Received 13 March 2013; Accepted 9 May 2013

Academic Editors: M. Aasim, A. Bakhsh, K. M. Khawar, S. Onarici, C. A. Ozel, and A. Q. Rao

Copyright © 2013 Jamilah Syafawati Yaacob et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants.