Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 613635, 8 pages
http://dx.doi.org/10.1155/2013/613635
Research Article

Protein Profiling and Histone Deacetylation Activities in Somaclonal Variants of Oil Palm (Elaeis guineensis Jacq.)

1Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2School of Biosciences, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia

Received 13 March 2013; Accepted 9 May 2013

Academic Editors: M. Aasim, A. Bakhsh, K. M. Khawar, S. Onarici, C. A. Ozel, and A. Q. Rao

Copyright © 2013 Jamilah Syafawati Yaacob et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Cullis, M. A. Cullis, and M. O. Abdullah, “Development of markers for the mantled phenotype (and somaclonal variants in general) in oil Palm,” in Proceedings of the PIPOC International Oil Palm Congress (Agriculture, Biotechnology & Sustainability), pp. 299–312, 2007.
  2. E. Jaligot, A. Rival, T. Beule, J. Tregear, and E. Finnegan, “A marker-based strategy for the assessment of epigenetic instability in oil palm,” in Proceedings of the PIPOC International Oil Palm Congress (Agriculture, Biotechnology & Sustainability), pp. 313–323, 2007.
  3. E. Jaligot, A. Rival, T. Beulé, S. Dussert, and J. L. Verdeil, “Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis,” Plant Cell Reports, vol. 19, no. 7, pp. 684–690, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. R. H. V. Corley, C. H. Lee, I. H. Law, and C. Y. Wong, “Abnormal flower development in oil palm clones,” Planter KL, vol. 62, pp. 233–240, 1986. View at Google Scholar
  5. M. Matthes, R. Singh, S. C. Cheah, and A. Karp, “Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes,” Theoretical and Applied Genetics, vol. 102, no. 6-7, pp. 971–979, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Cullis, “Mechanisms and control of rapid genomic changes in flax,” Annals of Botany, vol. 95, no. 1, pp. 201–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. A. Cullis, “Environmental stress—a generator of adaptive variation?” in Plant Adaptations to Stress Environments, H. R. Lerner, Ed., pp. 149–160, Marcel Dekker, 1999. View at Google Scholar
  8. A. Karp, “On the current understanding of somaclonal variation,” in Oxford Surveys of Plant Molecular and Cell Biology, B. J. Miflin, Ed., vol. 17, pp. 1–58, Oxford University Press, 1991. View at Google Scholar
  9. S. Chang and C. S. Pikaard, “Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation,” The Journal of Biological Chemistry, vol. 280, no. 1, pp. 796–804, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Tian and Z. J. Chen, “Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 200–205, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Tian, M. P. Fong, J. J. Wang et al., “Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development,” Genetics, vol. 169, no. 1, pp. 337–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. V. Probst, M. Fagard, F. Proux et al., “Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats,” Plant Cell, vol. 16, no. 4, pp. 1021–1034, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. J. Chen and L. Tian, “Roles of dynamic and reversible histone acetylation in plant development and polyploidy,” Biochimica et Biophysica Acta, vol. 1769, no. 5-6, pp. 295–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Loidl, “A plant dialect of the histone language,” Trends in Plant Science, vol. 9, no. 2, pp. 84–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Li, T. C. Hall, and R. Holmes-Davis, “Plant chromatin: development and gene control,” BioEssays, vol. 24, no. 3, pp. 234–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Mai, S. Valente, A. Nebbioso et al., “New pyrrole-based histone deacetylase inhibitors: binding mode, enzyme- and cell-based investigations,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 1, pp. 235–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Avalos, I. Celic, S. Muhammad, M. S. Cosgrove, J. D. Boeke, and C. Wolberger, “Structure of a Sir2 enzyme bound to an acetylated p53 peptide,” Molecular Cell, vol. 10, no. 3, pp. 523–535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. Soh, G. Wong, T. Y. Hor, C. C. Tan, and P. S. Chew, “Oil palm genetic improvement,” Plant Breeding Reviews, vol. 22, pp. 166–219, 2003. View at Google Scholar
  19. R. Singh, J. Nagappan, S. G. Tan, J. M. Panandam, and S. C. Cheah, “Development of simple sequence repeat (SSR) markers for oil palm and their application in genetic mapping and fngerprinting of tissue culture clones,” Asia-Pacific Journal of Molecular Biology and Biotechnology, vol. 15, no. 3, pp. 121–131, 2007. View at Google Scholar · View at Scopus
  20. D. J. Allocco, I. S. Kohane, and A. J. Butte, “Quantifying the relationship between co-expression, co-regulation and gene function,” BMC Bioinformatics, vol. 5, article 18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. F. F. Aceituno, N. Moseyko, S. Y. Rhee, and R. A. Gutiérrez, “The rules of gene expression in plants: organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana,” BMC Genomics, vol. 9, article 438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kuo and C. D. Allis, “Roles of histone acetyltransferases and deacetylases in gene regulation,” BioEssays, vol. 20, pp. 615–626, 1998. View at Google Scholar
  23. C. Choudhary, C. Kumar, F. Gnad et al., “Lysine acetylation targets protein complexes and co-regulates major cellular functions,” Science, vol. 325, no. 5942, pp. 834–840, 2009. View at Publisher · View at Google Scholar · View at Scopus