Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 617170, 8 pages
http://dx.doi.org/10.1155/2013/617170
Clinical Study

Cytokine Response of Cultured Skeletal Muscle Cells Stimulated with Proinflammatory Factors Depends on Differentiation Stage

1Centre for Intensive Care Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
2Division of Cardiology, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
3Applied Cachexia Research, Department of Cardiology, Charité Medical School, Campus Virchow-Klinikum, Berlin, Germany
4Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska Cesta 4, 1000 Ljubljana, Slovenia

Received 21 December 2012; Accepted 18 January 2013

Academic Editors: L. Guimarães-Ferreira, H. Nicastro, J. Wilson, and N. E. Zanchi

Copyright © 2013 Matej Podbregar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Cruz-Jentoft, F. Landi, E. Topinková, and J. P. Michel, “Understanding sarcopenia as a geriatric syndrome,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Tisdale, “Cancer cachexia,” Current Opinion in Gastroenterology, vol. 26, no. 2, pp. 146–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. von Haehling and S. D. Anker, “Cachexia as a major underestimated and unmet medical need: facts and numbers,” Journal of Cachexia, Sarcopenia and Muscle, vol. 1, pp. 1–5, 2010. View at Google Scholar
  4. K. Lenk, G. Schuler, and V. Adams, “Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training,” Journal of Cachexia, Sarcopenia and Muscle, vol. 1, pp. 9–21, 2010. View at Google Scholar
  5. S. Ciciliot and S. Schiaffino, “Regeneration of mammalian skeletal muscle: basic mechanisms and clinical implications,” Current Pharmaceutical Design, vol. 16, no. 8, pp. 906–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. B. P. Chargé and M. A. Rudnicki, “Cellular and molecular regulation of muscle regeneration,” Physiological Reviews, vol. 84, no. 1, pp. 209–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. G. Tidball and S. A. Villalta, “Regulatory interactions between muscle and the immune system during muscle regeneration,” American Journal of Physiology, vol. 298, no. 5, pp. R1173–R1187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. L. Serrano, B. Baeza-Raja, E. Perdiguero, M. Jardí, and P. Muñoz-Cánoves, “Interleukin-6 is an essential regulator of satellite-cell-mediated skeletal muscle hypertrophy,” Cell Metabolism, vol. 7, pp. 33–44, 2008. View at Google Scholar
  9. J. C. Bruusgaard, I. B. Johansen, I. M. Egner, Z. A. Rana, and K. Gundersen, “Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 15111–15116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Pannérec, G. Marazzi, and D. Sassoon, “Stem cells in the hood: the skeletal muscle niche,” Trends in Molecular Medicine, vol. 18, pp. 599–606, 2012. View at Google Scholar
  11. B. K. Pedersen and M. A. Febbraio, “Muscle as an endocrine organ: focus on muscle-derived interleukin-6,” Physiological Reviews, vol. 88, no. 4, pp. 1379–1406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Puppa, J. P. White, K. T. Velázquez et al., “The effect of exercise on IL-6-induced cachexia in the Apc (Min/+) mouse,” Journal of Cachexia, Sarcopenia and Muscle, vol. 3, pp. 117–137, 2012. View at Google Scholar
  13. K. Kami and E. Senba, “Localization of leukemia inhibitory factor and interleukin-6 messenger ribonucleic acids in regenerating rat skeletal muscle,” Muscle & Nerve, vol. 21, pp. 819–822, 1998. View at Google Scholar
  14. J. B. Kurek, S. Nouri, G. Kannourakis, M. Murphy, and L. Austin, “Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle,” Muscle & Nerve, vol. 19, pp. 1291–1301, 1996. View at Google Scholar
  15. O. Prelovsek, T. Mars, M. Jevsek, M. Podbregar, and Z. Grubic, “High dexamethasone concentration prevents stimulatory effects of TNF-α and LPS on IL-6 secretion from the precursors of human muscle regeneration,” American Journal of Physiology, vol. 291, no. 6, pp. R1651–R1656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. De Rossi, P. Bernasconi, F. Baggi, R. De Waal Malefyt, and R. Mantegazza, “Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation,” International Immunology, vol. 12, no. 9, pp. 1329–1335, 2000. View at Google Scholar · View at Scopus
  17. L. Austin, J. Bower, J. Kurek, and N. Vakakis, “Effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation,” Journal of the Neurological Sciences, vol. 112, no. 1-2, pp. 185–191, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Al-Khalili, K. Bouzakri, S. Glund, F. Lönnqvist, H. A. Koistinen, and A. Krook, “Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle,” Molecular Endocrinology, vol. 20, no. 12, pp. 3364–3375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Baeza-Raja and P. Muñoz-Cánoves, “p38 MAPK-induced nuclear factor-κB activity is required for skeletal muscle differentiation: role of interleukin-6,” Molecular Biology of the Cell, vol. 15, no. 4, pp. 2013–2026, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. N. Cooney, G. O. Maish, T. Gilpin, M. L. Shumate, C. H. Lang, and T. C. Vary, “Mechanism of IL-1 induced inhibition of protein synthesis in skeletal muscle,” Shock, vol. 11, no. 4, pp. 235–241, 1999. View at Google Scholar · View at Scopus
  21. C. H. Lang, R. A. Frost, A. C. Nairn, D. A. MacLean, and T. C. Vary, “TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation,” American Journal of Physiology, vol. 282, no. 2, pp. E336–E347, 2002. View at Google Scholar · View at Scopus
  22. B. K. Pedersen, “The diseasome of physical inactivity—and the role of myokines in muscle-fat cross talk,” Journal of Physiology, vol. 587, no. 23, pp. 5559–5568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Hirata, S. Masuda, T. Tamura et al., “Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin,” American Journal of Pathology, vol. 163, no. 1, pp. 203–215, 2003. View at Google Scholar · View at Scopus
  24. A. Pimorady-Esfahani, M. D. Grounds, and P. G. McMenamin, “Macrophages and dendritic cells in normal and regenerating murine skeletal muscle,” Muscle & Nerve, vol. 20, pp. 158–166, 1997. View at Google Scholar
  25. L. Arnold, A. Henry, F. Poron et al., “Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis,” Journal of Experimental Medicine, vol. 204, no. 5, pp. 1057–1069, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. A. S. Borge, K. H. Kalland, S. Olsen, A. Bletsa, E. Berggreen, and H. Wiig, “Cytokines are produced locally by myocytes in rat skeletal muscle during endotoxemia,” American Journal of Physiology, vol. 296, no. 3, pp. H735–H744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. H. Lang, C. Silvis, N. Deshpande, G. Nystrom, and R. A. Frost, “Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1beta, -6, and high-mobility-group protein-1 in skeletal muscle,” Shock, vol. 19, no. 6, pp. 538–546, 2003. View at Google Scholar · View at Scopus
  28. G. Luo, D. D. Hershko, B. W. Robb, C. J. Wray, and P. O. Hasselgren, “IL-1β stimulates IL-6 production in cultured skeletal muscle cells through activation of MAP kinase signaling pathway and NF-κB,” American Journal of Physiology, vol. 284, no. 5, pp. R1249–R1254, 2003. View at Google Scholar · View at Scopus
  29. R. C. J. Langen, J. L. J. Van Der Velden, A. M. W. J. Schols, M. C. J. M. Kelders, E. F. M. Wouters, and Y. M. W. Janssen-Heininger, “Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization,” The FASEB Journal, vol. 18, no. 2, pp. 227–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. P. Li, “TNF-α is a mitogen in skeletal muscle,” American Journal of Physiology, vol. 285, no. 2, pp. C370–C376, 2003. View at Google Scholar · View at Scopus
  31. Z. Grubic, R. Komel, W. F. Walker, and A. F. Miranda, “Myoblast fusion and innervation with rat motor nerve alter distribution of acetylcholinesterase and its mRNA in cultures of human muscle,” Neuron, vol. 14, no. 2, pp. 317–327, 1995. View at Google Scholar · View at Scopus
  32. T. Marš, “Effects of LIF on neuromuscular junction formation in co-cultures of rat spinal cord explant and human muscle,” Croatica Chemica Acta, vol. 81, no. 1, pp. 177–182, 2008. View at Google Scholar · View at Scopus
  33. S. Pirkmajer, D. Filipovic, T. Mars, K. Mis, and Z. Grubic, “HIF-1α response to hypoxia is functionally separated from the glucocorticoid stress response in the in vitro regenerating human skeletal muscle,” American Journal of Physiology, vol. 299, no. 6, pp. R1693–R1700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Golicnik, M. Podbregar, M. Lainscak, S. D. Anker, Z. Grubic, and T. Mars, “Atorvastatin modulates constitutive and lipopolysaccharide induced IL-6 secretion in precursors of human skeletal muscle,” African Journal of Pharmacy and Pharmacology, vol. 6, pp. 241–247, 2012. View at Google Scholar
  35. S. R. Broussard, R. H. McCusker, J. E. Novakofski et al., “IL-1β impairs insulin-like growth factor I-induced differentiation and downstream activation signals of the insulin-like growth factor I receptor in myoblasts,” Journal of Immunology, vol. 172, no. 12, pp. 7713–7720, 2004. View at Google Scholar · View at Scopus
  36. N. Carbó, S. Busquets, M. Van Royen, B. Alvarez, F. J. López-Soriano, and J. M. Argilés, “TNF-α is involved in activating DNA fragmentation in skeletal muscle,” British Journal of Cancer, vol. 86, no. 6, pp. 1012–1016, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. P. Li and R. J. Schwartz, “TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion,” The FASEB Journal, vol. 15, no. 8, pp. 1413–1415, 2001. View at Google Scholar · View at Scopus
  38. B. K. Pedersen and C. Brandt, “The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 520258, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Bartoccioni, D. Michaelis, and R. Hohlfeld, “Constitutive and cytokine-induced production of interleukin-6 by human myoblasts,” Immunology Letters, vol. 42, no. 3, pp. 135–138, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. S. D. Hauschka and C. P. Emerson, “Embryonic origins of skeletal muscles,” in Myology, A. G. Engel and C. Franzini-Armstrong, Eds., vol. 1, pp. 3–44, McGraw-Hill, New York, NY, USA, 2004. View at Google Scholar
  41. V. Askanas, H. Kwan, R. B. Alvarez et al., “De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: ultrastructural and ultrastructural-cytochemical studies,” Journal of Neurocytology, vol. 16, no. 4, pp. 523–537, 1987. View at Google Scholar · View at Scopus
  42. B. Alvarez, L. S. Quinn, S. Busquets, F. J. López-Soriano, and J. M. Argilés, “TNF-α modulates cytokine and cytokine receptors in C2C12 myotubes,” Cancer Letters, vol. 175, no. 2, pp. 181–185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. R. A. Frost, G. J. Nystrom, and C. H. Lang, “Multiple Toll-like receptor ligands induce an IL-6 transcriptional response in skeletal myocytes,” American Journal of Physiology, vol. 290, no. 3, pp. R773–R784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Bakkar and D. C. Guttridge, “NF-κB signaling: a tale of two pathways in skeletal myogenesis,” Physiological Reviews, vol. 90, no. 2, pp. 495–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Figarella-Branger, M. Civatte, C. Bartoli, and J. F. Pellissier, “Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies,” Muscle and Nerve, vol. 28, no. 6, pp. 659–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Szalay, Z. Rázga, and E. Duda, “TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors myoD and myogenin,” European Journal of Cell Biology, vol. 74, no. 4, pp. 391–398, 1997. View at Google Scholar · View at Scopus
  47. D. C. Guttridge, M. W. Mayo, L. V. Madrid, C. Y. Wang, and A. S. Baldwin, “NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia,” Science, vol. 289, no. 5488, pp. 2363–2365, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Moresi, A. Pristerà, B. M. Scicchitano et al., “Tumor necrosis factor-α inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response,” Stem Cells, vol. 26, no. 4, pp. 997–1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. W. P. Arend, G. Palmer, and C. Gabay, “IL-1, IL-18, and IL-33 families of cytokines,” Immunological Reviews, vol. 223, no. 1, pp. 20–38, 2008. View at Publisher · View at Google Scholar · View at Scopus