Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 726963, 9 pages
http://dx.doi.org/10.1155/2013/726963
Research Article

Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

1Faculty of Electronic Information and Electronic Engineering, Dalian University of Technology, Dalian 116024, China
2Modern Manufacture Engineering Center, Heilongjiang University of Science and Technology, Harbin 150022, China

Received 21 August 2013; Accepted 21 September 2013

Academic Editors: C. Bao, S. Kou, A. Szekrenyes, and M. Yao

Copyright © 2013 Guoliang Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Matthews and R. A. DeCarlo, “Decentralized tracking for a class of interconnected nonlinear systems using variable structure control,” Automatica, vol. 24, no. 2, pp. 187–193, 1988. View at Google Scholar · View at Scopus
  2. V. Utkin and J. Shi, “Integral sliding mode in systems operating under uncertainty conditions,” in Proceedings of the 35th IEEE Conference on Decision and Control. Part 4 (of 4), pp. 4591–4596, December 1996. View at Scopus
  3. T.-Z. Wu, J.-D. Wang, and Y.-T. Juang, “Decoupled integral variable structure control for MIMO systems,” Journal of the Franklin Institute, vol. 344, no. 7, pp. 1006–1020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Huerta, A. G. Loukianov, and J. M. Cañedo, “Multimachine power-system control: integral-SM approach,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2229–2236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Laghrouche, F. Plestan, and A. Glumineau, “Higher order sliding mode control based on integral sliding mode,” Automatica, vol. 43, no. 3, pp. 531–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Niu, D. W. C. Ho, and J. Lam, “Robust integral sliding mode control for uncertain stochastic systems with time-varying delay,” Automatica, vol. 41, no. 5, pp. 873–880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Dadras and H. R. Momeni, “Passivity-based fractional-order integral sliding-mode control design for uncertain fractional-order nonlinear systems,” Mechatronics, vol. 23, no. 7, pp. 880–887, 2013. View at Publisher · View at Google Scholar
  8. J. Komsta, N. van Oijen, and P. Antoszkiewicz, “Integral sliding mode compensator for load pressure control of die-cushion cylinder drive,” Control Engineering Practice, vol. 21, no. 5, pp. 708–718, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S.-U. Lee and P. H. Chang, “Control of a heavy-duty robotic excavator using time delay control with integral sliding surface,” Control Engineering Practice, vol. 10, no. 7, pp. 697–711, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. X.-H. Mo and Q.-X. Lan, “Finite-time integral sliding mode control for motion control of permanent-magnet linear motors,” Mathematical Problems in Engineering, vol. 2013, Article ID 567610, 7 pages, 2013. View at Publisher · View at Google Scholar
  11. C.-S. Chiu, “Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems,” Automatica, vol. 48, no. 2, pp. 316–326, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Korondi, “Tensor product model transformation based sliding surface design,” Acta Polytechnica Hungarica, vol. 3, no. 4, pp. 23–35, 2006. View at Google Scholar
  13. P. Korondi, H. Hashimoto, and G. Sziebig, “Sliding sector design for nonlinear systems,” in Proceedings of the 17th World Congress: The International Federation of Automatic Control, Seoul, Korea, July 2013.
  14. B. Takarics, P. Korondi, and P. Baranyi, “TP model transformation based sliding mode control design for nonlinear systems,” in Proceedings of the 14th International Power Electronics and Motion Control Conference (EPE-PEMC '10), pp. T1061–T1068, Ohrid, Macedonia, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Takarics, TP model transformation based sliding mode control and friction compensation [Ph.D. dissertation], BME, Budapest, Hungary, 2011.
  16. B. Takarics, “Parallel distributed compensation based sector sliding mode control of Takagi-Sugeno type polytopic models,” in Proceedings of the 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI '12), Herl'any, Slovakia, January2012.
  17. P. Baranyi, “TP model transformation as a way to LMI-based controller design,” IEEE Transactions on Industrial Electronics, vol. 51, no. 2, pp. 387–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Baranyi, D. Tikk, Y. Yam, and R. J. Patton, “From differential equations to PDC controller design via numerical transformation,” Computers in Industry, vol. 51, no. 3, pp. 281–297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Baranyi, P. Várlaki, and Y. Yam, “Tensor product model transformation in polytopic model-based control,” in Automation and Control Engineering, CRC Press, Taylor and Francis, 2013. View at Google Scholar
  20. P. Baranyi, P. Korondi, and H. Hashimoto, “Global asymptotic stabilization of the prototypical aeroelastic wing section via TP model transformation,” Asian Journal of Control, vol. 7, no. 2, pp. 99–111, 2005. View at Google Scholar · View at Scopus
  21. Z. Petres, P. Baranyi, P. Korondi, and H. Hashimoto, “Trajectory tracking by TP model transformation: case study of a benchmark problem,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1654–1663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Baranyi and A. R. Várkonyi-Kóczy, “TP transformation based dynamic system modeling for nonlinear control,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp. 2191–2203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Rovid, L. Szeidl, and P. Várlaki, “On tensor-product model based representation of neural networks,” in Proceedings of the 15th IEEE International Conference on Intelligent Engineering Systems (INES '11), Poprad, Slovakia, June 2011.
  24. C. Sun, Y. Huang, C. Qian, and L. Wang, “On modeling and control of a flexible air-breathing hypersonic vehicle based on LPV method,” Frontiers of Electrical and Electronic Engineering in China, vol. 7, no. 1, pp. 56–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Baranyi and Y. Yam, “Case study of the TP-model transformation in the control of a complex dynamic model with structural nonlinearity,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 895–904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Nagy, Z. Petres, P. Baranyi, and H. Hashimoto, “Computational relaxed TP model transformation: restricting the computation to subspaces of the dynamic model,” Asian Journal of Control, vol. 11, no. 5, pp. 461–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R.-E. Precup, C.-A. Dragoş, S. Preitl, M.-B. Rǎdac, and E. M. Petriu, “Novel tensor product models for automatic transmission system control,” IEEE Systems Journal, vol. 6, no. 3, pp. 488–498, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. Y.-J. Huang, T.-C. Kuo, and S.-H. Chang, “Adaptive sliding-mode control for nonlinear systems with uncertain parameters,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 2, pp. 534–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, “New methodologies for adaptive sliding mode control,” International Journal of Control, vol. 83, no. 9, pp. 1907–1919, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Lee and V. I. Utkin, “Chattering suppression methods in sliding mode control systems,” Annual Reviews in Control, vol. 31, no. 2, pp. 179–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Castaños and L. Fridman, “Analysis and design of integral sliding manifolds for systems with unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 853–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. W.-J. Cao and J.-X. Xu, “Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems,” IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1355–1360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Oriolo and Y. Nakamura, “Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators,” in Proceedings of the 30th IEEE Conference on Decision and Control, pp. 2398–2403, December 1991. View at Scopus
  34. M. Jankovic, D. Fontaine, and P. V. Kokotović, “TORA example: cascade- and passivity-based control designs,” IEEE Transactions on Control Systems Technology, vol. 4, no. 3, pp. 292–297, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Olfati-Saber, “Normal forms for underactuated mechanical systems with symmetry,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 305–308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Altuǧ, J. P. Ostrowski, and R. Mahony, “Control of a quadrotor helicopter using visual feedback,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 72–77, Washington, DC, USA, May 2002. View at Scopus