Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 785070, 11 pages
Research Article

Phylogenetic, Expression, and Bioinformatic Analysis of the ABC1 Gene Family in Populus trichocarpa

1State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
2Library of Northeast Forestry University, 26 Hexing Road, Harbin 150040, China

Received 22 June 2013; Accepted 28 July 2013

Academic Editors: R. Jeewon and R. Rivas

Copyright © 2013 Zhanchao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We studied 17 ABC1 genes in Populus trichocarpa, all of which contained an ABC1 domain consisting of about 120 amino acid residues. Most of the ABC1 gene products were located in the mitochondria or chloroplasts. All had a conserved VAVK-like motif and a DFG motif. Phylogenetic analysis grouped the genes into three subgroups. In addition, the chromosomal locations of the genes on the 19 Populus chromosomes were determined. Gene structure was studied through exon/intron organization and the MEME motif finder, while heatmap was used to study the expression diversity using EST libraries. According to the heatmap, PtrABC1P14 was highlighted because of the high expression in tension wood which related to secondary cell wall formation and cellulose synthesis, thus making a contribution to follow-up experiment in wood formation. Promoter cis-element analysis indicated that almost all of the ABC1 genes contained one or two cis-elements related to ABA signal transduction pathway and drought stress. Quantitative real-time PCR was carried out to evaluate the expression of all of the genes under abiotic stress conditions (ABA, CdCl2, high temperature, high salinity, and drought); the results showed that some of the genes were affected by these stresses and confirmed the results of promoter cis-element analysis.