Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 787283, 8 pages
http://dx.doi.org/10.1155/2013/787283
Research Article

In Vitro Permeation of Micronized and Nanonized Alaptide from Semisolid Formulations

Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 61242 Brno, Czech Republic

Received 1 September 2013; Accepted 1 December 2013

Academic Editors: A. Concheiro, J. Hamman, and M. Ozyazici

Copyright © 2013 Radka Opatrilova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. De Souza Russo and V. F. T. Russo, Inventors; Cristalia Produtos Quimicos e Farmaceuticos, Ltd., assignee, “Pharmaceutical compositions of topic use, applied in treatment of skin and/or mucous injuries; use of compositions in treatment of skin and/or mucous injuries and use of compounds in treatment of skin and/or mucous injuries”, WO 2002083086 A1, 2002.
  2. K. Hashimoto, K. Nakata, M. Sakanaka, and J. Tanaka, Inventors; Japan Science and Technology Corporation, assignee, “Skin tissue regeneration promoters comprising ginsenoside Rb1”, EP1295893 A1, 2003.
  3. S. G. Choi, E. J. Baek, E. Davaa et al., “Topical treatment of the buccal mucosa and wounded skin in rats with a triamcinolone acetonide-loaded hydrogel prepared using an electron beam,” International Journal of Pharmaceutics, vol. 447, pp. 102–108, 2013. View at Google Scholar
  4. E. Kasafirek, A. Sturc, and A. Roubalova, “Linear tri- and tetrapeptides acting as prodrugs,” Collection of Czechoslovak Chemical Communications, vol. 57, pp. 179–187, 1992. View at Google Scholar
  5. E. Kasafirek, M. Rybak, I. Krejci, A. Sturc, E. Krepela, and A. Sedo, “Two-step generation of spirocyclic dipeptides from linear peptide ethyl ester precursors,” Life Sciences, vol. 50, no. 3, pp. 187–193, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Celis, S. Taleisnik, and R. Walter, “Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 68, no. 7, pp. 1428–1433, 1971. View at Google Scholar · View at Scopus
  7. M. Petersson and K. Uvnäs-Moberg, “Prolyl-leucyl-glycinamide shares some effects with oxytocin but decreases oxytocin levels,” Physiology and Behavior, vol. 83, no. 3, pp. 475–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Radl, E. Kasafirek, and I. Krejci, “Alaptide,” Drugs of the Future, vol. 15, pp. 445–447, 1990. View at Google Scholar
  9. J. Jampílek, R. Opatrilova, A. Rezacova, Z. Oktabec, and J. Dohnal, Inventors; Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, assignee, “Alaptide: Methods of effecting its solubility, membrane permeation and pharmaceutical compositions for human and veterinary applications”, PTC/CZ2012/000074, 2012.
  10. M. Douša and K. Lemr, “Liquid chromatographic method for enantiopurity control of alaptide using polysaccharide stationary phases,” Journal of Separation Science, vol. 34, no. 12, pp. 1402–1406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Maixner, J. Rohlíček, B. Kratochvíl, and A. Šturc, “X-ray powder diffraction data for alaptide, 8(S)-methyl-6,9-diazaspiro/4,5/decane-7,10-dione or cyclo(l-alanyl-1-amino-1-cyclopentan carbonyl), cyclo(l-Ala-Acp),” Powder Diffraction, vol. 24, pp. 32–34, 2009. View at Google Scholar · View at Scopus
  12. O. Julinek, V. Setnicka, A. Rezacova, J. Dohnal, V. Vosatka, and M. Urbanova, “Product of alaptide synthesis: determination of the absolute configuration,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, pp. 958–961, 2010. View at Google Scholar
  13. T. Burns, S. Breathnach, N. Cox, and C. Griffiths, Rook's Textbook of Dermatology, Blackwell Publishing, Oxford, UK, 7th edition, 2004.
  14. W. James, T. Berger, and D. Elston, Andrews' Diseases of the Skin: Clinical Dermatology, Saunders, Philadelphia, PA, USA, 10th edition, 2006.
  15. F. M. Watt, “The epidermal keratinocyte,” BioEssays, vol. 8, no. 5, pp. 163–167, 1988. View at Google Scholar · View at Scopus
  16. J. Vanzura, K. Kosar, and E. Kasafirek, “Inhibition of proliferative activity by cyclic dipeptides: spirocyclic derivatives of 1-aminocyclopentanecarboxylic acid,” Toxicology Letters, vol. 31, no. 3, pp. 189–193, 1986. View at Google Scholar · View at Scopus
  17. R. Lapka, “Pharmacokinetics and brain entry of alaptide, a novel nootropic agent, in mice, rats and rabbits,” Journal of Pharmacy and Pharmacology, vol. 43, no. 12, pp. 874–876, 1991. View at Google Scholar · View at Scopus
  18. K. Kosar and J. Vanzura, “Embryotoxicity of L-prolyl-L-leucyl-glycinamide, cyclo(1-amino-cyclopentanecarbonyl-alanyl) and cyclo(glycyl-leucyl), new potential neuropeptides in chick embryos,” Pharmazie, vol. 43, no. 10, pp. 715–716, 1988. View at Google Scholar · View at Scopus
  19. Bioveta-Alaptid veterinary ointment.cz, http://www.bioveta.cz/en/veterinary-division/products/new-products-for-dogs-and-cats/alaptid-veterinary-ointment.html.
  20. M. Schneider, F. Stracke, S. Hansen, and U. F. Schaefer, “Nanoparticles and their interactions with the dermal barrier,” Dermatoendocrinol, vol. 1, pp. 197–206, 2009. View at Google Scholar
  21. B. Baroli, “Penetration of nanoparticles and nanomaterials in the skin: fiction or reality?” Journal of Pharmaceutical Sciences, vol. 99, no. 1, pp. 21–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. W. Prow, J. E. Grice, L. L. Lin et al., “Nanoparticles and microparticles for skin drug delivery,” Advanced Drug Delivery Reviews, vol. 63, no. 6, pp. 470–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. S. J. Campbell, L. R. Contreras-Rojas, M. B. Delgado-Charro, and R. H. Guy, “Objective assessment of nanoparticle disposition in mammalian skin after topical exposure,” Journal of Controlled Release, vol. 162, pp. 201–207, 2012. View at Google Scholar
  24. E. Kimura, Y. Kawano, H. Todo, Y. Ikarashi, and K. Sugibayashi, “Measurement of skin permeation/penetration of nanoparticles for their safety evaluation,” Biological & Pharmaceutical Bulletin, vol. 35, pp. 1476–1486, 2012. View at Google Scholar
  25. M. Kansy, F. Senner, and K. Gubernator, “Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes,” Journal of Medicinal Chemistry, vol. 41, no. 7, pp. 1007–1010, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Avdeef and O. Tsinman, “PAMPA—a drug absorption in vitro model: 13. Chemical selectivity due to membrane hydrogen bonding: in combo comparisons of HDM-, DOPC-, and DS-PAMPA models,” European Journal of Pharmaceutical Sciences, vol. 28, no. 1-2, pp. 43–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Y. Tam, M. Velicky, and R. A. W. Dryfe, “The importance of and different approaches to permeability determination,” in Physico-Chemical Methods in Drug Discovery and Development, Z. Mandic, Ed., pp. 121–164, IAPC, Zagreb, Croatia, 2012. View at Google Scholar
  28. T. J. Franz, “Percutaneous absorption. On the relevance of in vitro data,” Journal of Investigative Dermatology, vol. 64, no. 3, pp. 190–195, 1975. View at Google Scholar · View at Scopus
  29. J. Jampilek and K. Brychtova, “Azone analogues: classification, design, and transdermal penetration principles,” Medical Research Review, vol. 32, pp. 907–947, 2012. View at Google Scholar
  30. J. Jampilek, “Transdermal application of drugs and techniques affecting skin barrier,” Journal of Bioequivalence & Bioavailability, vol. 5, pp. 233–235, 2013. View at Google Scholar
  31. U. Jacobi, M. Kaiser, R. Toll et al., “Porcine ear skin: an in vitro model for human skin,” Skin Research and Technology, vol. 13, no. 1, pp. 19–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Herkenne, A. Naik, Y. N. Kalia, J. Hadgraft, and R. H. Guy, “Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man,” Pharmaceutical Research, vol. 23, no. 8, pp. 1850–1856, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Meyer, R. Schwarz, and K. Neurand, “The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig,” Current Problems in Dermatology, vol. 7, pp. 39–52, 1978. View at Google Scholar · View at Scopus
  34. H. Wu, C. Ramachandran, N. D. Weiner, and B. J. Roessler, “Topical transport of hydrophilic compounds using water-in-oil nanoemulsions,” International Journal of Pharmaceutics, vol. 220, no. 1-2, pp. 63–75, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Akhtar, M. U. Rehman, H. M. S. Khan, F. Rasool, T. Saeed, and G. Murtaza, “Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-ascorbic acid,” Tropical Journal of Pharmaceutical Research, vol. 10, no. 3, pp. 281–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Panigrahi, S. Pattnaik, and S. K. Ghosal, “The effect of pH and organic ester penetration enhancers on skin permeation kinetics of terbutaline sulfate from pseudolatex-type transdermal delivery systems through mouse and human cadaver skins,” AAPS PharmSciTech, vol. 6, no. 2, pp. E167–E173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. T. Huang, M. J. Tsai, Y. H. Lin et al., “Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology,” International Journal of Nanomedicine, vol. 2013, pp. 2295–2304, 2013. View at Google Scholar
  38. Y.-S. Rhee, J.-G. Choi, E.-S. Park, and S.-C. Chi, “Transdermal delivery of ketoprofen using microemulsions,” International Journal of Pharmaceutics, vol. 228, no. 1-2, pp. 161–170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Kennish and B. Reidenberg, “A review of the effect of occlusive dressings on lamellar bodies in the stratum corneum and relevance to transdermal absorption,” Dermatology Online Journal, vol. 11, no. 3, p. 7, 2005. View at Google Scholar · View at Scopus
  40. B. Bhushan, Handbook of Nanotechnology, Springer, Berlin, Germany, 2004.
  41. C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases, vol. 2, pp. MR17–MR71, 2007. View at Google Scholar
  42. E. Corredor, P. S. Testillano, M.-J. Coronado et al., “Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification,” BMC Plant Biology, vol. 9, article 45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Verma and F. Stellacci, “Effect of surface properties on nanoparticle-cell interactions,” Small, vol. 6, no. 1, pp. 12–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. C. Watkinson, A. L. Bunge, J. Hadgraft, and M. E. Lane, “Nanoparticles do not penetrate human skin-a theoretical perspective,” Pharmaceutical Research, vol. 30, pp. 1943–1946, 2013. View at Google Scholar
  45. M. D. Barratt, “Quantitative structure-activity relationships for skin permeability,” Toxicology in Vitro, vol. 9, no. 1, pp. 27–37, 1995. View at Publisher · View at Google Scholar · View at Scopus