Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 808574, 9 pages
http://dx.doi.org/10.1155/2013/808574
Research Article

Analytical and Experimental Analysis of a Free Link in Contact with a Granular Medium

Mechanical Engineering Department, Auburn University, 1418 Wiggins Hall, Auburn, AL 36849, USA

Received 5 August 2013; Accepted 9 September 2013

Academic Editors: C. Bao and B. Yasilata

Copyright © 2013 Dan B. Marghitu and Seung Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Richard, M. Nicodem, R. Ddlannay, P. Ribiere, and D. Bideau, “Slow relaxation and compaction of granular systems,” Nature Materials, vol. 4, pp. 121–128, 2005. View at Google Scholar
  2. P. Constantin, E. Grossman, and M. Mungan, “Inelastic collisions of three particles on a line as a two-dimensional billiard,” Physica D, vol. 83, no. 4, pp. 409–420, 1995. View at Google Scholar · View at Scopus
  3. T. Zhou and L. P. Kadanoff, “Inelastic collapse of three particles,” Physical Review E, vol. 54, no. 1, pp. 623–628, 1996. View at Google Scholar · View at Scopus
  4. N. Schörghofer and T. Zhou, “Inelastic collapse of rotating spheres,” Physical Review E, vol. 54, no. 5, pp. 5511–5515, 1996. View at Google Scholar · View at Scopus
  5. B. Painter, M. Dutt, and R. P. Behringer, “Energy dissipation and clustering for a cooling granular material on a substrate,” Physica D, vol. 175, no. 1-2, pp. 43–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Zamankhan and H. Jun, “Complex flow dynamics in dense granular flows. Part II: simulations,” Journal of Applied Mechanics, Transactions ASME, vol. 74, no. 4, pp. 691–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Dutt and R. P. Behringer, “Effects of surface friction on a two-dimensional granular system: numerical model of a granular collider experiment,” Physical Review E, vol. 75, no. 2, Article ID 021305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. L. Grossman, T. Zhou, and E. Ben-Naim, “Towards granular hydrodynamics in two dimensions,” Physical Review E, vol. 55, no. 4, pp. 4200–4206, 1997. View at Google Scholar · View at Scopus
  9. G. I. Tardos, M. Irfan Khan, and D. G. Schaeffer, “Forces on a slowly rotating, rough cylinder in a Couette device containing a dry, frictional powder,” Physics of Fluids, vol. 10, no. 2, pp. 335–341, 1998. View at Google Scholar · View at Scopus
  10. S. A. Hill and G. F. Mazenko, “Granular clustering in a hydrodynamic simulation,” Physical Review E, vol. 67, no. 6, Article ID 061302, 2003. View at Google Scholar · View at Scopus
  11. A. V. Tkachenko and T. A. Witten, “Stress propagation through frictionless granular material,” Physical Review E, vol. 60, no. 1, pp. 687–696, 1999. View at Google Scholar · View at Scopus
  12. M. L. Nguyen and S. N. Coppersmith, “Scalar model of inhomogeneous elastic and granular media,” Physical Review E, vol. 62, no. 4, pp. 5248–5262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel, “Force distributions in three-dimensional granular assemblies: effects of packing order and interparticle friction,” Physical Review E, vol. 63, no. 4, Article ID 41304, 8 pages, 2001. View at Google Scholar · View at Scopus
  14. T. S. Majmudar and R. P. Behringer, “Contact force measurements and stress-induced anisotropy in granular materials,” Nature, vol. 435, no. 7045, pp. 1079–1082, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Knobloch, “Euler, the historical perspective,” Physica D, vol. 237, no. 14–17, pp. 1887–1893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. W. Chen, X. L. Li, F. L. Huang, H. J. Wu, and Y. Z. Chen, “Damping function in the penetration/perforation struck by rigid projectiles,” International Journal of Impact Engineering, vol. 35, no. 11, pp. 1314–1325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Albert, M. A. Pfeifer, A.-L. Barabási, and P. Schiffer, “Slow drag in a granular medium,” Physical Review Letters, vol. 82, no. 1, pp. 205–208, 1999. View at Google Scholar · View at Scopus
  18. M. B. Stone, R. Barry, D. P. Bernstein, M. D. Pelc, Y. K. Tsui, and P. Schiffer, “Local jamming via penetration of a granular medium,” Physical Review E, vol. 70, no. 4, Article ID 041301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Hill, S. Yeung, and S. A. Koehler, “Scaling vertical drag forces in granular media,” Europhysics Letters, vol. 72, no. 1, pp. 137–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Albert, P. Tegzes, R. Albert et al., “Stick-slip fluctuations in granular drag,” Physical Review E, vol. 64, no. 3, Article ID 031307, 9 pages, 2001. View at Google Scholar · View at Scopus
  21. I. Albert, J. G. Sample, A. J. Morss, S. Rajagopalan, A.-L. Barabási, and P. Schiffer, “Granular drag on a discrete object: Shape effects on jamming,” Physical Review E, vol. 64, no. 6, Article ID 061303, 4 pages, 2001. View at Google Scholar · View at Scopus
  22. J. R. de Bruyn and A. M. Walsh, “Penetration of spheres into loose granular media,” Canadian Journal of Physics, vol. 82, no. 6, pp. 439–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. L. S. Tsimring and D. Volfson, “Modeling of impact cratering in granular media,” in Powders and Grains, A. A. Balkema, Rotterdam, R. Garcia Rojo, H. J. Herrmann, and S. McNamara, Eds., pp. 1215–1223, 2005. View at Google Scholar
  24. M. A. Ambroso, R. D. Kamien, and D. J. Durian, “Dynamics of shallow impact cratering,” Physical Review E, vol. 72, no. 4, Article ID 041305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Hou, Z. Peng, R. Liu, K. Lu, and C. K. Chan, “Dynamics of a projectile penetrating in granular systems,” Physical Review E, vol. 72, no. 6, Article ID 062301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Katsuragi and D. J. Durian, “Unified force law for granular impact cratering,” Nature Physics, vol. 3, no. 6, pp. 420–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. de Vet and J. R. de Bruyn, “Shape of impact craters in granular media,” Physical Review E, vol. 76, no. 4, Article ID 041306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Lohse, R. Rauhé, R. Bergmann, and D. van der Meer, “Creating a dry variety of quicksand,” Nature, vol. 432, no. 7018, pp. 689–690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Lee and D. B. Marghitu, “Analysis of a rigid body obliquely impacting granular matter,” Nonlinear Dynamics, vol. 57, no. 1-2, pp. 289–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Lee and D. B. Marghitu, “Multiple impacts of a planar kinematic chain with a granular matter,” International Journal of Mechanical Sciences, vol. 51, no. 11-12, pp. 881–887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Crassous, D. Beladjine, and A. Valance, “Impact of a projectile on a granular medium described by a collision model,” Physical Review Letters, vol. 99, no. 24, Article ID 248001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Valance and J. Crassous, “Granular medium impacted by a projectile: experiment and model,” European Physical Journal E, vol. 30, no. 1, pp. 43–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. S. Nguyen and B. Brogliato, “Shock dynamics in granular chains: numerical simulations and comparison with experimental tests,” Granular Matter, vol. 14, pp. 341–362, 2012. View at Google Scholar
  34. P. Müller and T. Pöschel, “Oblique impact of frictionless spheres: on the limitations of hard sphere models for granular dynamics,” Granular Matter, vol. 14, pp. 115–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. “Optotrak,” http://www.ndigital.com/.
  36. V. Buchholtz and T. Pöschel, “Interaction of a granular stream with an obstacle,” Granular Matter, vol. 1, no. 1, pp. 33–41, 1998. View at Google Scholar · View at Scopus
  37. E. C. Rericha, C. Bizon, M. D. Shattuck, and H. L. Swinney, “Shocks in supersonic sand,” Physical Review Letters, vol. 88, no. 1, Article ID 014302, 2002. View at Google Scholar · View at Scopus
  38. C. R. Wassgren, J. A. Cordova, R. Zenit, and A. Karion, “Dilute granular flow around an immersed cylinder,” Physics of Fluids, vol. 15, no. 11, pp. 3318–3330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Geng and R. P. Behringer, “Slow drag in two-dimensional granular media,” Physical Review E, vol. 71, no. 1, Article ID 011302, 19 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Bharadwaj, C. Wassgren, and R. Zenit, “The unsteady drag force on a cylinder immersed in a dilute granular flow,” Physics of Fluids, vol. 18, no. 4, Article ID 043301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Albert, P. Tegzes, B. Kahng et al., “Jamming and fluctuations in granular drag,” Physical Review Letters, vol. 84, no. 22, pp. 5122–5125, 2000. View at Google Scholar · View at Scopus
  42. D. M. Mueth, H. M. Jaeger, and S. R. Nagel, “Force distribution in a granular medium,” Physical Review E, vol. 57, no. 3, pp. 3164–3169, 1998. View at Google Scholar · View at Scopus
  43. E. L. Nelson, H. Katsuragi, P. Mayor, and D. J. Durian, “Projectile interactions in granular impact cratering,” Physical Review Letters, vol. 101, no. 6, Article ID 068001, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. D. L. Hopkins and V. L. McGuffin, “Three-dimensional molecular simulation of electrophoretic separations,” Analytical Chemistry, vol. 70, no. 6, pp. 1066–1075, 1998. View at Google Scholar · View at Scopus