Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 836309, 5 pages
http://dx.doi.org/10.1155/2013/836309
Research Article

Investigation of Chemokine Receptor CCR2V64Il Gene Polymorphism and Migraine without Aura in the Iranian Population

1Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
2Physiology Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran
3School of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran

Received 6 September 2013; Accepted 3 October 2013

Academic Editors: J. T. Efird and V. Pistoia

Copyright © 2013 Alireza Zandifar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Menken, T. L. Munsat, and J. F. Toole, “The global burden of disease study: implications for neurology,” Archives of Neurology, vol. 57, no. 3, pp. 418–420, 2000. View at Google Scholar · View at Scopus
  2. R. E. Sheffield, “Migraine prevalence: a literature review,” Headache, vol. 38, no. 8, pp. 595–601, 1998. View at Google Scholar · View at Scopus
  3. G. D. Solomon, F. G. Skobieranda, and L. A. Gragg, “Quality of life and well-being of headache patients: measurement by the medical outcomes study instrument,” Headache, vol. 33, no. 7, pp. 351–358, 1993. View at Google Scholar · View at Scopus
  4. R. Burstein, H. Yamamura, A. Malick, and A. M. Strassman, “Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons,” Journal of Neurophysiology, vol. 79, no. 2, pp. 964–982, 1998. View at Google Scholar · View at Scopus
  5. J. J. Onuffer and R. Horuk, “Chemokines, chemokine receptors and small-molecule antagonists: recent developments,” Trends in Pharmacological Sciences, vol. 23, no. 10, pp. 459–467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Rittig, A. Peter, K. M. Baltz et al., “The CCR2 promoter polymorphism T-960A, but not the serum MCP-1 level, is associated with endothelial function in prediabetic individuals,” Atherosclerosis, vol. 198, no. 2, pp. 338–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Abbadie, J. A. Lindia, A. M. Cumiskey et al., “Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7947–7952, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Cha, J. K. Lee, J. Y. Lee et al., “Association of CCR2 polymorphisms with the number of closed coronary artery vessels in coronary artery disease,” Clinica Chimica Acta, vol. 382, no. 1-2, pp. 129–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Soto-Sánchez, J. Santos-Juanes, P. Coto-Segura et al., “Genetic variation at the CCR5/CCR2 gene cluster and risk of psoriasis and psoriatic arthritis,” Cytokine, vol. 50, no. 2, pp. 114–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Katrancioglu, S. Manduz, O. Karahan et al., “The role of the CCR2 gene polymorphism in abdominal aortic aneurysms,” Angiology, vol. 62, no. 2, pp. 140–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Sezgin, B. Koksal, G. Bagci, H. K. Kurtulgan, and O. Ozdemir, “CCR2 Polymorphism in chronic renal failure patients requiring long-term hemodialysis,” Internal Medicine, vol. 50, no. 21, pp. 2457–2461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. S. Kim, D. S. Kim, E. Y. Lee, I. N. Sunwoo, and Y. C. Choi, “CCR2-64I and CCR5Delta32 polymorphisms in Korean patients with myasthenia gravis,” Journal of Clinical Neurology, vol. 3, no. 3, pp. 133–138, 2007. View at Publisher · View at Google Scholar
  13. H. L. Lin, K. C. Ueng, Y. S. Hsieh, W. L. Chiang, S. F. Yang, and S. C. Chu, “Impact of MCP-1 and CCR-2 gene polymorphisms on coronary artery disease susceptibility,” Molecular Biology Reports, vol. 39, no. 9, pp. 9023–9030, 2012. View at Publisher · View at Google Scholar
  14. C. Huerta, V. Álvarez, I. F. Mata et al., “Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer's and Parkinson's disease,” Neuroscience Letters, vol. 370, no. 2-3, pp. 151–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Schürks, T. Kurth, J. E. Buring, and R. Y. Zee, “A candidate gene association study of 77 polymorphisms in migraine,” The Journal of Pain, vol. 10, no. 7, pp. 759–766, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. “The international classification of headache disorders: 2nd edition,” Cephalalgia, vol. 24, supplement 1, pp. 9–160, 2004.
  17. A. El Hasnaoui, M. Vray, A. Richard, F. Nachit-Ouinekh, and F. Boureau, “Assessing the severity of migraine: development of the MIGSEV scale,” Headache, vol. 43, no. 6, pp. 628–635, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Zandifar, S. S. Masjedi, and F. Haghdoost, “The psychometric properties of the persian migraine-specific quality of life questionnaire version 2.1 in episodic and chronic migraines,” The Scientific World Journal, vol. 2013, Article ID 950245, 6 pages, 2013. View at Google Scholar
  19. J. Ghosh, G. Joshi, S. Pradhan, and B. Mittal, “Investigation of TNFA 308 G > A and TNFB 252 G > A polymorphisms in genetic susceptibility to migraine,” Journal of Neurology, vol. 257, no. 6, pp. 898–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Dong, S. Jia, X. Ye, and J. Ni, “Association analysis of TNFRSF1B polymorphism with susceptibility for migraine in the Chinese Han population,” Journal of Clinical Neuroscience, vol. 19, no. 5, pp. 750–752, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. J. Gao and R. R. Ji, “Chemokines, neuronal-glial interactions, and central processing of neuropathic pain,” Pharmacology and Therapeutics, vol. 126, no. 1, pp. 56–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Abbadie, S. Bhangoo, Y. de Koninck, M. Malcangio, S. Melik-Parsadaniantz, and F. A. White, “Chemokines and pain mechanisms,” Brain Research Reviews, vol. 60, no. 1, pp. 125–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Schäfer, C. Schulz, D. Fraccarollo et al., “The CX3C chemokine fractalkine induces vascular dysfunction by generation of superoxide anions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 55–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Reuter, H. Bolay, I. Jansen-Olesen et al., “Delayed inflammation in rat meninges: implications for migraine pathophysiology,” Brain, vol. 124, part 12, pp. 2490–2502, 2001. View at Google Scholar · View at Scopus
  25. P. Sarchielli, A. Alberti, A. Baldi et al., “Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally,” Headache, vol. 46, no. 2, pp. 200–207, 2006. View at Publisher · View at Google Scholar
  26. J. Menetski, S. Mistry, M. Lu et al., “Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses,” Neuroscience, vol. 149, no. 3, pp. 706–714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. J. Zhang, Y. L. Dong, Y. Lu, S. Cao, Z. Q. Zhao, and Y. J. Gao, “Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain,” Journal of Neuroinflammation, vol. 9, p. 136, 2012. View at Publisher · View at Google Scholar
  28. V. C. Vieira, M. F. M. Barral, R. A. Mendoza-Sassi, J. M. Silveira, M. A. Soares, and A. M. B. de Martínez, “The effect of combined polymorphisms in chemokines and chemokine receptors on the clinical course of HIV-1 infection in a Brazilian population,” Memorias do Instituto Oswaldo Cruz, vol. 106, no. 4, pp. 408–414, 2011. View at Google Scholar · View at Scopus
  29. J. R. Ortlepp, K. Vesper, V. Mevissen et al., “Chemokine receptor (CCR2) genotype is associated with myocardial infarction and heart failure in patients under 65 years of age,” Journal of Molecular Medicine, vol. 81, no. 6, pp. 363–367, 2003. View at Google Scholar · View at Scopus
  30. R. Miyagishi, M. Niino, T. Fukazawa, I. Yabe, S. Kikuchi, and K. Tashiro, “C-C chemokine receptor 2 gene polymorphism in Japanese patients with multiple sclerosis,” Journal of Neuroimmunology, vol. 145, no. 1-2, pp. 135–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Combadière, O. Godin, C. Vidal, A. Cangialosi, C. Proust, and C. Tzourio, “Common CX3CR1 alleles are associated with a reduced risk of headaches,” Headache, vol. 48, no. 7, pp. 1061–1066, 2008. View at Publisher · View at Google Scholar · View at Scopus