Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 840376, 6 pages
Research Article

Determination of Decabrominated Diphenyl Ether in Soils by Soxhlet Extraction and High Performance Liquid Chromatography

1School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
3School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

Received 7 August 2013; Accepted 24 September 2013

Academic Editors: J. Jia and M. J. La Guardia

Copyright © 2013 Xing-Jian Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study described the development of a method based on soxhlet extraction combining high performance liquid chromatography (soxhlet-HPLC) for the accurate detection of BDE-209 in soils. The solvent effect of working standard solutions in HPLC was discussed. Results showed that 1 : 1 of methanol and acetone was the optimal condition which could totally dissolve the BDE-209 in environmental samples and avoid the decrease of the peak area and the peak deformation difference of BDE-209 in HPLC. The preliminary experiment was conducted on the configured grassland (1 μg/g) to validate the method feasibility. The method produced reliable reproducibility, simulated soils ( ) RSD 1.0%, and was further verified by the analysis e-waste contaminated soils, RSD range 5.9–11.4%. The contamination level of BDE-209 in burning site was consistent with the previous study of Longtang town but lower than Guiyu town, and higher concentration of BDE-209 in paddy field mainly resulted from the long-standing disassembling area nearby. This accurate and fast method was successfully developed to extract and analyze BDE-209 in soil samples, showing its potential use for replacing GC to determinate BDE-209 in soil samples.