Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 890578, 15 pages
http://dx.doi.org/10.1155/2013/890578
Research Article

On the Accurate Identification of Network Paths Having a Common Bottleneck

1Punjab University College of Information Technology (PUCIT), University of the Punjab, Allama Iqbal (old) Campus, Lahore, Pakistan
2Networks and Distributed Systems Group, Department of Informatics, University of Oslo, Norway

Received 29 August 2013; Accepted 19 September 2013

Academic Editors: L. Jacob and L. W. Wong

Copyright © 2013 Muhammad Murtaza Yousaf and Michael Welzl. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared congestion of flows via end-to-end measurement,” IEEE/ACM Transactions on Networking, vol. 10, no. 3, pp. 381–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Kim, T. Kim, Y. Shin, S. S. Lam, and E. J. Powers, “Awavelet-based approach to detect shared congestion,” in Proceedings of the ACM SIGCOMM 2004 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, August 2004.
  3. O. Younis and S. Fahmy, “FlowMate: scalable on-line flow clustering,” IEEE/ACM Transactions on Networking, vol. 13, no. 2, pp. 288–301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Katabi, I. Bazzi, and X. Yang, “A passive approach for detectingshared bottlenecks,” in Proceedings of the 10th IEEE International Conference on Computer Communications and Networks, October 2001.
  5. M. S. Kim, T. Kim, Y. Shin, S. S. Lam, and E. J. Powers, “Scalable clustering of Internet paths by shared congestion,” in Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM '06), April 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Harfoush, A. Bestavros, and J. Byers, “Robust identification of shared losses using end-to-end unicast probes,” in Proceedings of the 8th IEEE International Conference on Network Protocols, pp. 22–33, November 2000. View at Scopus
  7. G. Golub and F. V. Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, Md, USA, 1984.
  8. S. Camtepe, M. Krishnamoorthy, and B. Yener, “A tool for internet chatroomsurveillance,” in Intelligence and Security Informatics (ISI '04), pp. 252–265, 2004. View at Google Scholar
  9. S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler, and H. Zhang, “An eigenspace update algorithm for image analysis,” Graphical Models and Image Processing, vol. 59, no. 5, pp. 321–332, 1997. View at Google Scholar · View at Scopus
  10. Network Simulator, http://www.isi.edu/nsnam/ns/.
  11. S. Floyd and V. Jacobson, “Traffic phase effects in packet-switched gateways,” ACM SIGCOMM Computer Communication Review, vol. 21, no. 2, pp. 26–42, 1991. View at Publisher · View at Google Scholar
  12. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413, 1993. View at Publisher · View at Google Scholar · View at Scopus