Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 892746, 8 pages
Research Article

The Effects of Water Parameters on Monthly Seagrass Percentage Cover in Lawas, East Malaysia

1Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, 50480 Kuala Lumpur, Malaysia
3MOE-HICoE Marine Endangered Species (MES) Program, Institute of Oceanography & Environment (INOS), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
4Sarawak Forestry Corporation, Lot 218, KCLD, Jalan Tapang, Kota Sentosa, 93250 Kuching, Sarawak, Malaysia
5Agro-biotechnology Institute (ABI), c/o MARDI Headquarters, 43400 Serdang, Selangor, Malaysia

Received 8 July 2013; Accepted 4 August 2013

Academic Editors: X. Chen, M. Leaver, V. Martin-Jezequel, and X. Pochon

Copyright © 2013 E. I. Ahmad-Kamil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Seagrass is a valuable marine ecosystem engineer. However, seagrass population is declining worldwide. The lack of seagrass research in Malaysia raises questions about the status of seagrasses in the country. The seagrasses in Lawas, which is part of the coral-mangrove-seagrass complex, have never been studied in detail. In this study, we examine whether monthly changes of seagrass population in Lawas occurred. Data on estimates of seagrass percentage cover and water physicochemical parameters (pH, turbidity, salinity, temperature, and dissolved oxygen) were measured at 84 sampling stations established within the study area from June 2009 to May 2010. Meteorological data such as total rainfall, air temperature, and Southern Oscillation Index were also investigated. Our results showed that (i) the monthly changes of seagrass percentage cover are significant, (ii) the changes correlated significantly with turbidity measurements, and (iii) weather changes affected the seagrass populations. Our study indicates seagrass percentage increased during the El-Nino period. These results suggest that natural disturbances such as weather changes affect seagrass populations. Evaluation of land usage and measurements of other water physicochemical parameters (such as heavy metal, pesticides, and nutrients) should be considered to assess the health of seagrass ecosystem at the study area.