Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 896873, 22 pages
http://dx.doi.org/10.1155/2013/896873
Review Article

Pharmacological Effects of Active Compounds on Neurodegenerative Disease with Gastrodia and Uncaria Decoction, a Commonly Used Poststroke Decoction

Molecular Chinese Medicine Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong

Received 27 August 2013; Accepted 17 September 2013

Academic Editors: C.-L. Hsieh, B.-Y. Zeng, and K. Zhao

Copyright © 2013 Stanley C. C. Chik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Scatena, G. E. Martorana, P. Bottoni, G. Botta, P. Pastore, and B. Giardina, “An update on pharmacological approaches to neurodegenerative disease,” Expert Opinion on Investigational Drugs, vol. 16, no. 1, pp. 59–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Linseman, “Targeting oxidative stress for neuroprotection,” Antioxidants and Redox Signaling, vol. 11, no. 3, pp. 421–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S.-M. Lucas, N. J. Rothwell, and R. M. Gibson, “The role of inflammation in CNS injury and disease,” British Journal of Pharmacology, vol. 147, no. 1, pp. S232–S240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. W. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,” Trends in Neurosciences, vol. 19, no. 8, pp. 312–318, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. U.-K. Hanisch, “Microglia as a source and target of cytokines,” Glia, vol. 40, no. 2, pp. 140–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Nakanishi, “Microglial functions and proteases,” Molecular Neurobiology, vol. 27, no. 2, pp. 163–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. C. A. Colton and D. L. Gilbert, “Microglia, an in vivo source of reactive oxygen species in the brain,” Advances in neurology, vol. 59, pp. 321–326, 1993. View at Google Scholar · View at Scopus
  8. A. Ghoshal, S. Das, S. Ghosh et al., “Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis,” Glia, vol. 55, no. 5, pp. 483–496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Zhu, Z. Xiong, X. Chen et al., “Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells,” PLoS ONE, vol. 7, no. 4, Article ID e35125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ii, M. Sunamoto, K. Ohnishi, and Y. Ichimori, “ß-amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity,” Brain Research, vol. 720, no. 1-2, pp. 93–100, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. C. K. Combs, J. Colleen Karlo, S.-C. Kao, and G. E. Landreth, “β-amyloid stimulation of microglia anti monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis,” Journal of Neuroscience, vol. 21, no. 4, pp. 1179–1188, 2001. View at Google Scholar · View at Scopus
  12. S. S. Shaftel, W. S. T. Griffin, and K. M. Kerry, “The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective,” Journal of Neuroinflammation, vol. 5, article 7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Lokensgard, S. Hu, W. Sheng et al., “Robust expression of TNF-α, IL-1β, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus,” Journal of NeuroVirology, vol. 7, no. 3, pp. 208–219, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. E. Mrak and W. S. T. Griffin, “Glia and their cytokines in progression of neurodegeneration,” Neurobiology of Aging, vol. 26, no. 3, pp. 349–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Tweedie, K. Sambamurti, and N. H. Greig, “TNF-α inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets,” Current Alzheimer Research, vol. 4, no. 4, pp. 378–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. L. Montgomery and W. J. Bowers, “Tumor Necrosis Factor-alpha and the Roles it Plays in Homeostatic and Degenerative Processes Within the Central Nervous System,” Journal of Neuroimmune Pharmacology, vol. 7, pp. 42–59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Fontaine, S. Mohand-Said, N. Hanoteau, C. Fuchs, K. Pfizenmaier, and U. Eisel, “Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2,” The Journal of Neuroscience, vol. 22, no. 7, p. RC216, 2002. View at Google Scholar · View at Scopus
  18. A. D. Bachstetter, B. Xing, L. de Almeida, E. R. Dimayuga, D. M. Watterson, and L. J. Van Eldik, “Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ),” Journal of Neuroinflammation, vol. 8, article 79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Pyo, I. Jou, S. Jung, S. Hong, and E.-H. Joe, “Mitogen-activated protein kinases activated by lipopolysaccharide and β-amyloid in cultured rat microglia,” NeuroReport, vol. 9, no. 5, pp. 871–874, 1998. View at Google Scholar · View at Scopus
  20. N. A. Simonian and J. T. Coyle, “Oxidative stress in neurodegenerative diseases,” Annual Review of Pharmacology and Toxicology, vol. 36, pp. 83–106, 1996. View at Google Scholar · View at Scopus
  21. W. S. Choi, S. Y. Yoon, and Y. J. Oh, “Differential cell death mechanisms in a dopaminergic neuronal cell line: role of ROS, JNK, caspase and cell death regulating genes in a 6-OHDA or MPP+-induced cell death,” Journal of Neurochemistry, vol. 70, pp. S60–S60, 1998. View at Google Scholar
  22. A. M. S. Mayer, “Therapeutic implications of microglia activation by lipopolysaccharide and reactive oxygen species generation in septic shock and central nervous system pathologies: a review,” Medicina, vol. 58, no. 4, pp. 377–385, 1998. View at Google Scholar · View at Scopus
  23. L. Qin, Y. Liu, C. Cooper, B. Liu, B. Wilson, and J.-S. Hong, “Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species,” Journal of Neurochemistry, vol. 83, no. 4, pp. 973–983, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Rodriguez-Pallares, J. A. Parga, A. Muñoz, P. Rey, M. J. Guerra, and J. L. Labandeira-Garcia, “Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons,” Journal of Neurochemistry, vol. 103, no. 1, pp. 145–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. B. Shaikh and L. F. B. Nicholson, “Effects of chronic low dose rotenone treatment on human microglial cells,” Molecular Neurodegeneration, vol. 4, no. 1, article 55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. S. Beckman and J. P. Crow, “Pathological implications of nitric oxide, superoxide and peroxynitrite formation,” Biochemical Society Transactions, vol. 21, no. 2, pp. 330–334, 1993. View at Google Scholar · View at Scopus
  27. X. Zhang, J. Chen, S. H. Graham et al., “Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite,” Journal of Neurochemistry, vol. 82, no. 1, pp. 181–191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. H. Liu, J. S. Beckman, B. A. Freeman, E. L. Hogan, and C. Y. Hsu, “Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury,” American Journal of Physiology, vol. 256, no. 2, p. 25/2, 1989. View at Google Scholar · View at Scopus
  29. L. J. Martin, “Mitochondrial and cell death mechanisms in neurodegenerative diseases,” Pharmaceuticals, vol. 3, pp. 839–915, 2010. View at Google Scholar
  30. M. P. Mattson, C. Culmsee, and F. Y. Zai, “Apoptotic and antiapoptotic mechanisms in stroke,” Cell and Tissue Research, vol. 301, no. 1, pp. 173–187, 2000. View at Google Scholar · View at Scopus
  31. C.-Y. Liu, C.-F. Lee, and Y.-H. Wei, “Role of reactive oxygen species-elicited apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases associated with mitochondrial DNA mutations,” Journal of the Formosan Medical Association, vol. 108, no. 8, pp. 599–611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Decker, D. Isenberg, and S. Muller, “Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis,” Journal of Biological Chemistry, vol. 275, no. 12, pp. 9043–9046, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. D. T. Chao and S. J. Korsmeyer, “BCL-2 family: regulators of cell death,” Annual Review of Immunology, vol. 16, pp. 395–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. D. J. Kane, T. A. Sarafian, R. Anton et al., “Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species,” Science, vol. 262, no. 5137, pp. 1274–1277, 1993. View at Google Scholar · View at Scopus
  36. D. S. Knopman, “Current treatment of mild cognitive impairment and Alzheimer's disease,” Current Neurology and Neuroscience Reports, vol. 6, no. 5, pp. 365–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Yamada and T. Nabeshima, “Animal models of Alzheimer's disease and evaluation of anti-dementia drugs,” Pharmacology and Therapeutics, vol. 88, no. 2, pp. 93–113, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. T. H. Johnston and J. M. Brotchie, “Drugs in development for Parkinson's disease: an update,” Current Opinion in Investigational Drugs, vol. 7, no. 1, pp. 25–32, 2006. View at Google Scholar · View at Scopus
  39. A. H. V. Schapira, E. Bezard, J. Brotchie et al., “Novel pharmacological targets for the treatment of Parkinson's disease,” Nature Reviews Drug Discovery, vol. 5, no. 10, pp. 845–854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. W. G. Meissner, M. Frasier, T. Gasser et al., “Priorities in Parkinson's disease research,” Nature Reviews Drug Discovery, vol. 10, no. 5, pp. 377–393, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Davis, K. Lees, and G. Donnan, “Treating the acute stroke patient as an emergency: current practices and future opportunities,” International Journal of Clinical Practice, vol. 60, no. 4, pp. 399–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. N. J. Sucher, “Insights from molecular investigations of traditional Chinese herbal stroke medicines: implications for neuroprotective epilepsy therapy,” Epilepsy and Behavior, vol. 8, no. 2, pp. 350–362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J.-X. Song, S. C.-W. Sze, T.-B. Ng et al., “Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models?” Journal of Ethnopharmacology, vol. 139, no. 3, pp. 698–711, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Fruehauf, “Prevention and treatment by chinese herbal medicine, stroke and post-stroke syndrome,” The Journal of Chinese Medicine, vol. 44, pp. 22–35, 1994. View at Google Scholar
  45. T.-X. Zhang, Y.-F. Wang, and J. Ciriello, “The herbal medicine tian ma gou teng yen alters the development of high blood pressure in the spontaneously hypertensive rat,” American Journal of Chinese Medicine, vol. 17, no. 3-4, pp. 211–219, 1989. View at Google Scholar · View at Scopus
  46. S. Wang, Y. Chen, D. He et al., “Inhibition of vascular smooth muscle cell proliferation by serum from rats treated orally with Gastrodia and Uncaria decoction, a traditional Chinese formulation,” Journal of Ethnopharmacology, vol. 114, no. 3, pp. 458–462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Napoli and W. Palinski, “Neurodegenerative diseases: insights into pathogenic mechanisms from atherosclerosis,” Neurobiology of Aging, vol. 26, no. 3, pp. 293–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. D. A. Patten, M. Germain, M. A. Kelly, and R. S. Slack, “Reactive oxygen species: stuck in the middle of neurodegeneration,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. S357–S367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Brossi, Ed., The Alkaloids—Chemistry and Pharmacology, Academic press, Orlando, Fla, USA, 1986.
  50. A. L. Souto, J. F. Tavares, M. S. Da Silva, M. F. F. M. De Diniz, P. F. De Athayde-Filho, and J. M. Barbosa Filho, “Anti-inflammatory activity of alkaloids: an update from 2000 to 2010,” Molecules, vol. 16, no. 10, pp. 8515–8534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Andraws, P. Chawla, and D. L. Brown, “Cardiovascular effects of Ephedra alkaloids: a comprehensive review,” Progress in Cardiovascular Diseases, vol. 47, no. 4, pp. 217–225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Yamanaka, Y. Kimizuka, and N. Aimi, “Studies of plants containing indole alkaloids. IX. Quantitative analysis on the tertiary alkaloids in various parts of Uncaria rhynchophylla M(IQ),” Yakugaku Zasshi, vol. 103, no. 10, pp. 1028–1033, 1983. View at Google Scholar · View at Scopus
  53. J. Zhang, C. J. Yang, and D. G. Wu, “Studies on the chemical constituents of sharpleaf gambir plant (Uncaria rhynchophylla) (II),” Chinese Traditional and Herbal Drugs, vol. 29, pp. 649–651, 1998. View at Google Scholar
  54. D. Yuan, B. Ma, C. Wu et al., “Alkaloids from the leaves of Uncaria rhynchophylla And Their Inhibitory Activity on NO production in lipopolysaccharide-activated microglia,” Journal of Natural Products, vol. 71, no. 7, pp. 1271–1274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Yuan, B. Ma, J.-Y. Yang et al., “Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism,” International Immunopharmacology, vol. 9, no. 13-14, pp. 1549–1554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Song, R. Qu, S. Zhu, R. Zhang, and S. Ma, “Rhynchophylline attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathways in primary microglia,” Phytotherapy Research, vol. 26, no. 10, pp. 1528–1533, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. C.-L. Hsieh, T.-Y. Ho, S.-Y. Su, W.-Y. Lo, C.-H. Liu, and N.-Y. Tang, “Uncaria rhynchophylla and rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-κB activity in kainic acid-treated rats,” American Journal of Chinese Medicine, vol. 37, no. 2, pp. 351–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Y.-F. Xian, Z.-X. Lin, Q.-Q. Mao, S.-P. Ip, Z.-R. Su, and X.-P. Lai, “Protective effect of isorhynchophylline against β-amyloid-induced neurotoxicity in PC12 cells,” Cellular and Molecular Neurobiology, vol. 32, no. 3, pp. 353–360, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Shimada, H. Goto, T. Itoh et al., “Evaluation of the protective effects of alkaloids isolated from the hooks and stems of Uncaria sinensis on glutamate-induced neuronal death in cultured cerebellar granule cells from rats,” Journal of Pharmacy and Pharmacology, vol. 51, no. 6, pp. 715–722, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. T.-H. Kang, Y. Murakami, K. Matsumoto et al., “Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in Xenopus oocytes,” European Journal of Pharmacology, vol. 455, no. 1, pp. 27–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. J.-S. Shi and H. G. Kenneth, “Effect of rhynchophylline on apoptosis induced by dopamine in NT2 cells,” Acta Pharmacologica Sinica, vol. 23, no. 5, pp. 445–449, 2002. View at Google Scholar · View at Scopus
  62. T.-H. Kang, Y. Murakami, H. Takayama et al., “Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: putative neurotransmitter receptors involved in their action,” Life Sciences, vol. 76, no. 3, pp. 331–343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. X. Mo, D. D. Xu, and K. L. Ken, “Effects of rhynchophylline on rat cortical neurons stressed by methamphetamine,” Pharmacologyonline, vol. 3, pp. 856–861, 2006. View at Google Scholar
  64. J.-H. Lu, J.-Q. Tan, S. S. K. Durairajan et al., “Isorhynchophylline, a natural alkaloid, promotes the degradation of α-synuclein in neuronal cells via inducing autophagy,” Autophagy, vol. 8, no. 1, pp. 98–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. S. M. Rothman and J. W. Olney, “Glutamate and the pathophysiology of hypoxic-ischemic brain damage,” Annals of Neurology, vol. 19, no. 2, pp. 105–111, 1986. View at Google Scholar · View at Scopus
  66. M. Baba, S. Nakajo, P.-H. Tu et al., “Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies,” American Journal of Pathology, vol. 152, no. 4, pp. 879–884, 1998. View at Google Scholar · View at Scopus
  67. X. R. Shi, Z. Y. Hong, H. R. Liu, Y. C. Zhang, and Y. Z. Zhu, “Neuroprotective effects of SCM198 on 6-hydroxydopamine-induced behavioral deficit in rats and cytotoxicity in neuronal SH-SY5Y cells,” Neurochemistry International, vol. 58, no. 8, pp. 851–860, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Qi, Z. Y. Hong, H. Xin, and Y. Z. Zhu, “Neuroprotective effects of leonurine on ischemia/reperfusion-induced mitochondrial dysfunctions in rat cerebral cortex,” Biological & Pharmaceutical Bulletin, vol. 33, no. 12, pp. 1958–1964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. K. P. Loh, J. Qi, B. K. H. Tan, X. H. Liu, B. G. Wei, and Y. Z. Zhu, “Leonurine protects middle cerebral artery occluded rats through antioxidant effect and regulation of mitochondrial function,” Stroke, vol. 41, no. 11, pp. 2661–2668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. R. J. Nijveldt, E. Van Nood, D. E. C. Van Hoorn, P. G. Boelens, K. Van Norren, and P. A. M. Van Leeuwen, “Flavonoids: a review of probable mechanisms of action and potential applications,” American Journal of Clinical Nutrition, vol. 74, no. 4, pp. 418–425, 2001. View at Google Scholar · View at Scopus
  71. J. Robak and R. J. Gryglewski, “Bioactivity of flavonoids,” Polish Journal of Pharmacology, vol. 48, no. 6, pp. 555–564, 1996. View at Google Scholar · View at Scopus
  72. G. Bureau, F. Longpré, and M.-G. Martinoli, “Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation,” Journal of Neuroscience Research, vol. 86, no. 2, pp. 403–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. J. Zhang, L. C. V. Cheang, M. W. Wang, and S. M.-Y. Lee, “Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish,” International Journal of Molecular Medicine, vol. 27, no. 2, pp. 195–203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. W.-C. Hou, R.-D. Lin, C.-T. Chen, and M.-H. Lee, “Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 216–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. L. D. Mercer, B. L. Kelly, M. K. Horne, and P. M. Beart, “Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures,” Biochemical Pharmacology, vol. 69, no. 2, pp. 339–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Jazvinšćak Jembrek, L. Vuković, J. Puhović, J. Erhardt, and N. Oršolić, “Neuroprotective effect of quercetin against hydrogen peroxide-induced oxidative injury in P19 neurons,” Journal of Molecular Neuroscience, vol. 47, no. 2, pp. 286–299, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Haleagrahara, C. J. Siew, N. K. Mitra, and M. Kumari, “Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum,” Neuroscience Letters, vol. 500, no. 2, pp. 139–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Shimada, H. Goto, T. Kogure et al., “Protective effect of phenolic compounds isolated from the hooks and stems of Uncaria sinensis on glutamate-induced neuronal death,” American Journal of Chinese Medicine, vol. 29, no. 1, pp. 173–180, 2001. View at Google Scholar · View at Scopus
  79. M. A. Ansari, H. M. Abdul, G. Joshi, W. O. Opii, and D. A. Butterfield, “Protective effect of quercetin in primary neurons against Aβ(1-42): relevance to Alzheimer's disease,” Journal of Nutritional Biochemistry, vol. 20, no. 4, pp. 269–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Bournival, P. Quessy, and M.-G. Martinoli, “Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons,” Cellular and Molecular Neurobiology, vol. 29, no. 8, pp. 1169–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Suematsu, M. Hosoda, and K. Fujimori, “Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells,” Neuroscience Letters, vol. 504, no. 3, pp. 223–227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Pu, K. Mishima, K. Irie et al., “Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats,” Journal of Pharmacological Sciences, vol. 104, no. 4, pp. 329–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Rivera, G. Costa, A. Abin et al., “Reduction of ischemic brain damage and increase of glutathione by a liposomal preparation of quercetin in permanent focal ischemia in rats,” Neurotoxicity Research, vol. 13, no. 2, pp. 105–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. C. A. Rice-Evans, N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridham, “The relative antioxidant activities of plant-derived polyphenolic flavonoids,” Free Radical Research, vol. 22, no. 4, pp. 375–383, 1995. View at Google Scholar · View at Scopus
  85. K. A. Youdim and J. A. Joseph, “A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects,” Free Radical Biology and Medicine, vol. 30, no. 6, pp. 583–594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Ossola, T. M. Kääriäinen, and P. T. Männistö, “The multiple faces of quercetin in neuroprotection,” Expert Opinion on Drug Safety, vol. 8, no. 4, pp. 397–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Dajas, G. Costa, J. A. Abín-Carriquiry, R. McGregor, and J. Urbanavicius, “Involvement of nicotinic acetylcholine receptors in the protection of dopamine terminals in experimental Parkinsonism,” Functional Neurology, vol. 16, no. 4, pp. 113–123, 2001. View at Google Scholar · View at Scopus
  88. A. R. Tapas, D. M. Sakarkar, and R. B. Kakde, “Flavonoids as nutraceuticals: a review,” Tropical Journal of Pharmaceutical Research, vol. 7, pp. 1089–1099, 2008. View at Google Scholar
  89. Y.-C. Chen, S.-C. Shen, W.-R. Lee, W.-C. Hou, L.-L. Yang, and T. J. F. Lee, “Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages,” Journal of Cellular Biochemistry, vol. 82, no. 4, pp. 537–548, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. S.-W. Wang, Y.-J. Wang, Y.-J. Su et al., “Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines,” NeuroToxicology, vol. 33, no. 3, pp. 482–490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Moshahid Khan, S. S. Raza, H. Javed et al., “Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson's disease,” Neurotoxicity Research, vol. 22, no. 1, pp. 1–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Koda, Y. Kuroda, and H. Imai, “Rutin supplementation in the diet has protective effects against toxicant-induced hippocampal injury by suppression of microglial activation and pro-inflammatory cytokines : protective effect of rutin against toxicant-induced hippocampal injury,” Cellular and Molecular Neurobiology, vol. 29, no. 4, pp. 523–531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Pu, K. Mishima, K. Irie et al., “Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats,” Journal of Pharmacological Sciences, vol. 104, no. 4, pp. 329–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. F.-Q. Li, T. Wang, Z. Pei, B. Liu, and J.-S. Hong, “Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons,” Journal of Neural Transmission, vol. 112, no. 3, pp. 331–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Xu, J. Dou, L. Zhang, Q. Guo, and C. Zhou, “Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalin in the serum,” Biological & Pharmaceutical Bulletin, vol. 33, no. 2, pp. 238–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. E. K. C. Kong, S. Yu, J. E. Sanderson, K.-B. Chen, Y. Huang, and C.-M. Yu, “A novel anti-fibrotic agent, baicalein, for the treatment of myocardial fibrosis in spontaneously hypertensive rats,” European Journal of Pharmacology, vol. 658, no. 2-3, pp. 175–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Y. Hwang, Y. T. Oh, H. Yoon et al., “Baicalein suppresses hypoxia-induced HIF-1α protein accumulation and activation through inhibition of reactive oxygen species and PI 3-kinase/Akt pathway in BV2 murine microglial cells,” Neuroscience Letters, vol. 444, no. 3, pp. 264–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. C.-J. Chen, S.-L. Raung, S.-L. Liao, and S.-Y. Chen, “Inhibition of inducible nitric oxide synthase expression by baicalein in endotoxin/cytokine-stimulated microglia,” Biochemical Pharmacology, vol. 67, no. 5, pp. 957–965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. H. J. Lee, Y. H. Noh, D. Y. Lee et al., “Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells,” European Journal of Cell Biology, vol. 84, no. 11, pp. 897–905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. X. Mu, G. He, Y. Cheng, X. Li, B. Xu, and G. Du, “Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro,” Pharmacology Biochemistry and Behavior, vol. 92, no. 4, pp. 642–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. J. H. Choi, A. Y. Choi, H. Yoon et al., “Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction,” Experimental and Molecular Medicine, vol. 42, no. 12, pp. 811–822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. Y.-C. Chen, J.-M. Chow, C.-W. Lin, C.-Y. Wu, and S.-C. Shen, “Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6,” Toxicology and Applied Pharmacology, vol. 216, no. 2, pp. 263–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. X.-X. Li, G.-R. He, X. Mu et al., “Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria,” European Journal of Pharmacology, vol. 674, no. 2-3, pp. 227–233, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. S.-F. Chen, C.-W. Hsu, W.-H. Huang, and J.-Y. Wang, “Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury,” British Journal of Pharmacology, vol. 155, no. 8, pp. 1279–1296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. K.-W. Kim, K.-T. Ha, C.-S. Park et al., “Polygonum cuspidatum, compared with baicalin and berberine, inhibits inducible nitric oxide synthase and cyclooxygenase-2 gene expressions in RAW 264.7 macrophages,” Vascular Pharmacology, vol. 47, no. 2-3, pp. 99–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. L.-L. Liu, L.-K. Gong, H. Wang et al., “Baicalin inhibits macrophage activation by lipopolysaccharide and protects mice from endotoxin shock,” Biochemical Pharmacology, vol. 75, no. 4, pp. 914–922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. C.-T. Li, W.-P. Zhang, S.-H. Fang et al., “Baicalin attenuates oxygen-glucose deprivation-induced injury by inhibiting oxidative stress-mediated 5-lipoxygenase activation in PC12 cells,” Acta Pharmacologica Sinica, vol. 31, no. 2, pp. 137–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. X.-K. Tu, W.-Z. Yang, S.-S. Shi, C.-H. Wang, and C.-M. Chen, “Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia,” Neurochemical Research, vol. 34, no. 9, pp. 1626–1634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. X.-K. Tu, W.-Z. Yang, S.-S. Shi et al., “Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia,” Inflammation, vol. 34, no. 5, pp. 463–470, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. X. Xue, X.-J. Qu, Y. Yang et al., “Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation,” Biochemical and Biophysical Research Communications, vol. 403, no. 3-4, pp. 398–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Cao, G. Li, Y.-F. Wang et al., “Neuroprotective effect of baicalin on compression spinal cord injury in rats,” Brain Research, vol. 1357, pp. 115–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Wakabayashi and K. Yasui, “Wogonin inhibits inducible prostaglandin E2 production in macrophages,” European Journal of Pharmacology, vol. 406, no. 3, pp. 477–481, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. S.-C. Shen, W.-R. Lee, H.-Y. Lin et al., “In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production,” European Journal of Pharmacology, vol. 446, no. 1–3, pp. 187–194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. I. Wakabayashi, “Inhibitory effects of baicalein and wogonin on lipopolysaccharide-induced nitric oxide production in macrophages,” Pharmacology and Toxicology, vol. 84, no. 6, pp. 288–291, 1999. View at Google Scholar · View at Scopus
  115. G.-C. Huang, J.-M. Chow, S.-C. Shen, L.-Y. Yang, C.-W. Lin, and Y.-C. Chen, “Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages,” International Immunopharmacology, vol. 7, no. 8, pp. 1054–1063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Z. Piao, S. A. Jin, H. S. Chun, J. C. Lee, and W. K. Kim, “Neuroprotective effect of wogonin: potential roles of inflammatory cytokines,” Archives of Pharmacal Research, vol. 27, no. 9, pp. 930–936, 2004. View at Google Scholar · View at Scopus
  117. H. Z. Piao, I. Y. Choi, J.-S. Park et al., “Wogonin inhibits microglial cell migration via suppression of nuclear factor-kappa B activity,” International Immunopharmacology, vol. 8, no. 12, pp. 1658–1662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. Y.-C. Chen, S.-C. Shen, L.-G. Chen, T. J.-F. Lee, and L.-L. Yang, “Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide,” Biochemical Pharmacology, vol. 61, no. 11, pp. 1417–1427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Cho and H.-K. Lee, “Wogonin inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion,” Biological & Pharmaceutical Bulletin, vol. 27, no. 10, pp. 1561–1564, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. Y.-C. Chen, L.-L. Yang, and T. J.-F. Lee, “Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation,” Biochemical Pharmacology, vol. 59, no. 11, pp. 1445–1457, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. K. M. You, H.-G. Jong, and H. P. Kim, “Inhibition of cyclooxygenase/lipoxygenase from human platelets by polyhydroxylated/methoxylated flavonoids isolated from medicinal plants,” Archives of Pharmacal Research, vol. 22, no. 1, pp. 18–24, 1999. View at Google Scholar · View at Scopus
  122. D. H. Kim, S. Kim, S. J. Jeon et al., “The effects of acute and repeated oroxylin A treatments on Aβ25-35-induced memory impairment in mice,” Neuropharmacology, vol. 55, no. 5, pp. 639–647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. Y.-C. Liang, Y.-T. Huang, S.-H. Tsai, S.-Y. Lin-Shiau, C.-F. Chen, and J.-K. Lin, “Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages,” Carcinogenesis, vol. 20, no. 10, pp. 1945–1952, 1999. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Hougee, A. Sanders, J. Faber et al., “Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages,” Biochemical Pharmacology, vol. 69, no. 2, pp. 241–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Kowalski, A. Samojedny, M. Paul, G. Pietsz, and T. Wilczok, “Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1β and tumor necrosis factor-α genes in J774.2 macrophages,” Pharmacological Reports, vol. 57, no. 3, pp. 390–394, 2005. View at Google Scholar · View at Scopus
  126. S. K. Ha, P. Lee, J. A. Park et al., “Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model,” Neurochemistry International, vol. 52, no. 4-5, pp. 878–886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Hämäläinen, R. Nieminen, M. Z. Asmawi, P. Vuorela, H. Vapaatalo, and E. Moilanen, “Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages,” Planta Medica, vol. 77, no. 13, pp. 1504–1511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Hämäläinen, R. Nieminen, P. Vuorela, M. Heinonen, and E. Moilanen, “Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages,” Mediators of Inflammation, vol. 2007, Article ID 45673, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. O. A. Harasstani, S. Moin, C. L. Tham et al., “Flavonoid combinations cause synergistic inhibition of proinflammatory mediator secretion from lipopolysaccharide-induced RAW 264.7 cells,” Inflammation Research, vol. 59, no. 9, pp. 711–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. C. López-Sánchez, F. J. Martín-Romero, F. Sun et al., “Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain,” Brain Research, vol. 1182, no. 1, pp. 123–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. S.-J. Kim, J.-Y. Um, S.-H. Hong, and J.-Y. Lee, “Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages,” American Journal of Chinese Medicine, vol. 39, no. 1, pp. 171–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. Z. Liu, X. Tao, C. Zhang, Y. Lu, and D. Wei, “Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide,” Biomedicine and Pharmacotherapy, vol. 59, no. 9, pp. 481–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. L. Zhang, X.-R. Cheng, J.-J. Hu, L. Sun, and G.-H. Du, “Neuroprotective effects of hyperoside on sodium azide-induced apoptosis in PC12 cells,” Chinese Journal of Natural Medicines, vol. 9, no. 6, pp. 450–455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. H.-Y. Chen, J.-H. Wang, Z.-X. Ren, and X.-B. Yang, “Protective effect of hyperin on focal cerebral ischemia reperfusion injury in rats,” Journal of Chinese Integrative Medicine, vol. 4, no. 5, pp. 526–529, 2006. View at Google Scholar · View at Scopus
  135. R. Tundis, M. R. Loizzo, F. Menichini, G. A. Statti, and F. Menichini, “Biological and pharmacological activities of iridoids: recent developments,” Mini-Reviews in Medicinal Chemistry, vol. 8, no. 4, pp. 399–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. Q.-S. Wang, Y. Xiang, Y.-L. Cui, K.-M. Lin, and X.-F. Zhang, “Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation,” PLoS ONE, vol. 7, no. 3, Article ID e34122, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. K. N. Nam, Y.-S. Choi, H.-J. Jung et al., “Genipin inhibits the inflammatory response of rat brain microglial cells,” International Immunopharmacology, vol. 10, no. 4, pp. 493–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. H.-J. Koo, K.-H. Lim, H.-J. Jung, and E.-H. Park, “Anti-inflammatory evaluation of gardenia extract, geniposide and genipin,” Journal of Ethnopharmacology, vol. 103, no. 3, pp. 496–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. F. Yin, J.-H. Liu, X.-X. Zheng, and L.-X. Guo, “GLP-1 receptor plays a critical role in geniposide-induced expression of heme oxygenase-1 in PC12 cells,” Acta Pharmacologica Sinica, vol. 31, no. 5, pp. 540–545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Liu, F. Yin, X. Zheng, J. Jing, and Y. Hu, “Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway,” Neurochemistry International, vol. 51, no. 6-7, pp. 361–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. J.-H. Liu, F. Yin, L.-X. Guo, X.-H. Deng, and Y.-H. Hu, “Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway,” Acta Pharmacologica Sinica, vol. 30, no. 2, pp. 159–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. F. Yin, J. Liu, X. Zheng, L. Guo, and H. Xiao, “Geniposide induces the expression of heme oxygenase-1 via PI3K/Nrf2-signaling to enhance the antioxidant capacity in primary hippocampal neurons,” Biological & Pharmaceutical Bulletin, vol. 33, no. 11, pp. 1841–1846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Yamazaki, K. Chiba, and C. Yoshikawa, “Genipin suppresses A23187-induced cytotoxicity in Neuro2a cells,” Biological & Pharmaceutical Bulletin, vol. 32, no. 6, pp. 1043–1046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Yamazaki, K. Chiba, and K. Satoh, “Neuro2a cell death induced by 6-hydroxydopamine is attenuated by genipin,” Journal of Health Science, vol. 54, no. 6, pp. 638–644, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Yamazaki, N. Sakura, K. Chiba, and T. Mohri, “Prevention of the neurotoxicity of the amyloid β protein by genipin,” Biological & Pharmaceutical Bulletin, vol. 24, no. 12, pp. 1454–1455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  146. M. Tanaka, M. Yamazaki, and K. Chiba, “Neuroprotective action of genipin on tunicamycin-induced cytotoxicity in neuro2a cells,” Biological & Pharmaceutical Bulletin, vol. 32, no. 7, pp. 1220–1223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. L.-X. Guo, J.-H. Liu, and Z.-N. Xia, “Geniposide inhibits CoCl2-induced PC12 cells death via the mitochondrial pathway,” Chinese Medical Journal, vol. 122, no. 23, pp. 2886–2892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. P. Lee, J. Lee, S. Y. Choi, S. E. Lee, S. Lee, and D. Son, “Geniposide from Gardenia jasminoides attenuates neuronal cell death in oxygen and glucose deprivation-exposed rat hippocampal slice culture,” Biological & Pharmaceutical Bulletin, vol. 29, no. 1, pp. 174–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. M. Yamazaki, K. Chiba, T. Mohri, and H. Hatanaka, “Activation of the mitogen-activated protein kinase cascade through nitric oxide synthesis as a mechanism of neuritogenic effect of genipin in PC12h cells,” Journal of Neurochemistry, vol. 79, no. 1, pp. 45–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. M. Yamazaki, K. Chiba, T. Mohri, and H. Hatanaka, “Cyclic GMP-dependent neurite outgrowth by genipin and nerve growth factor in PC12h cells,” European Journal of Pharmacology, vol. 488, no. 1–3, pp. 35–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Yamazaki and K. Chiba, “Genipin exhibits neurotrophic effects through a common signaling pathway in nitric oxide synthase-expressing cells,” European Journal of Pharmacology, vol. 581, no. 3, pp. 255–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Yamazaki, K. Chiba, and T. Mohri, “Neuritogenic effect of natural iridoid compounds on PC12h cells and its possible relation to signaling protein kinases,” Biological & Pharmaceutical Bulletin, vol. 19, no. 6, pp. 791–795, 1996. View at Google Scholar · View at Scopus
  153. P. H. Evans, “Free radicals in brain metabolism and pathology,” British Medical Bulletin, vol. 49, no. 3, pp. 577–587, 1993. View at Google Scholar · View at Scopus
  154. R. Edge, D. J. McGarvey, and T. G. Truscott, “The carotenoids as anti-oxidants—a review,” Journal of Photochemistry and Photobiology B, vol. 41, no. 3, pp. 189–200, 1997. View at Publisher · View at Google Scholar · View at Scopus
  155. D. A. Cooper, A. L. Eldridge, and J. C. Peters, “Dietary carotenoids and certain cancers, heart disease, and age-related macular degeneration: a review of recent research,” Nutrition Reviews, vol. 57, no. 7, pp. 201–214, 1999. View at Google Scholar · View at Scopus
  156. M. Etminan, S. S. Gill, and A. Samii, “Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson's disease: meta-analysis,” Lancet Neurology, vol. 4, no. 6, pp. 362–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. F. Yoshino, A. Yoshida, N. Umigai, K. Kubo, and M.-C. Lee, “Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain,” Journal of Clinical Biochemistry and Nutrition, vol. 49, no. 3, pp. 182–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. M. A. Papandreou, M. Tsachaki, S. Efthimiopoulos, P. Cordopatis, F. N. Lamari, and M. Margarity, “Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection,” Behavioural Brain Research, vol. 219, no. 2, pp. 197–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. A. S. Ahmad, M. A. Ansari, M. Ahmad et al., “Neuroprotection by crocetin in a hemi-parkinsonian rat model,” Pharmacology Biochemistry and Behavior, vol. 81, no. 4, pp. 805–813, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. X. Xu, Y. Lu, and X. Bie, “Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons,” Planta Medica, vol. 73, no. 7, pp. 650–654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. X. Zeng, S. Zhang, L. Zhang, K. Zhang, and X. Zheng, “A study of the neuroprotective effect of the phenolic glucoside gastrodin during cerebral ischemia in vivo and in vitro,” Planta Medica, vol. 72, no. 15, pp. 1359–1365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. J.-N. Dai, Y. Zong, L.-M. Zhong et al., “Gastrodin inhibits expression of inducible no synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-Stimulated microglia via MAPK pathways,” PLoS ONE, vol. 6, no. 7, Article ID e21891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. X. Bie, Y. Chen, J. Han, H. Dai, H. Wan, and T. Zhao, “Effects of gastrodin on amino acids after cerebral ischemia-reperfusion injury in rat striatum,” Asia Pacific Journal of Clinical Nutrition, vol. 16, no. 1, pp. 305–308, 2007. View at Google Scholar · View at Scopus
  164. S. Kim, H. Park, Y. Song et al., “Reduction of oxidative stress by p-hydroxybenzyl alcohol-containing biodegradable polyoxalate nanoparticulate antioxidant,” Biomaterials, vol. 32, no. 11, pp. 3021–3029, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. B.-W. Kim, S. Koppula, J.-W. Kim et al., “Modulation of LPS-stimulated neuroinflammation in BV-2 microglia by Gastrodia elata: 4-hydroxybenzyl alcohol is the bioactive candidate,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 549–557, 2012. View at Publisher · View at Google Scholar · View at Scopus
  166. K.-Y. Kam, S. J. Yu, N. Jeong et al., “p-hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrf2, PDI, and neurotrophic factor genes in a rat model of brain ischemia,” Molecules and Cells, vol. 31, no. 3, pp. 209–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. S. J. Yu, J. R. Kim, C. K. Lee et al., “Gastrodia elata blume and an active component, p-hydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions,” Biological & Pharmaceutical Bulletin, vol. 28, no. 6, pp. 1016–1020, 2005. View at Publisher · View at Google Scholar · View at Scopus