Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 913654, 10 pages
Research Article

Glycyrrhetinic Acid-Poly(ethylene glycol)-glycyrrhetinic Acid Tri-Block Conjugates Based Self-Assembled Micelles for Hepatic Targeted Delivery of Poorly Water Soluble Drug

1Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
2The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China

Received 24 June 2013; Accepted 29 July 2013

Academic Editors: D. Quintanar-Guerrero, A. Savaser, and L. A. Videla

Copyright © 2013 Fengbo Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The triblock 18β-glycyrrhetinic acid-poly(ethylene glycol)-18β-glycyrrhetinic acid conjugates (GA-PEG-GA) based self-assembled micelles were synthesized and characterized by FTIR, NMR, transmission electron microscopy, and particle size analysis. The GA-PEG-GA conjugates having the critical micelle concentration of  M were used to form nanosized micelles, with mean diameters of 159.21 ± 2.2 nm, and then paclitaxel (PTX) was incorporated into GA-PEG-GA micelles by self-assembly method. The physicochemical properties of the PTX loaded GA-PEG-GA micelles were evaluated including in vitro cellular uptake, cytotoxicity, drug release profile, and in vivo tissue distribution. The results demonstrate that the GA-PEG-GA micelles had low cytotoxicity and good ability of selectively delivering drug to hepatic cells in vitro and in vivo by the targeting moiety glycyrrhetinic acid. In conclusion, the GA-PEG-GA conjugates have potential medical applications for targeted delivery of poor soluble drug delivery.